| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644 |
- # coding=utf-8
- # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch EfficientNet model."""
- import math
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutputWithNoAttention,
- BaseModelOutputWithPoolingAndNoAttention,
- ImageClassifierOutputWithNoAttention,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- )
- from .configuration_efficientnet import EfficientNetConfig
- logger = logging.get_logger(__name__)
- # General docstring
- _CONFIG_FOR_DOC = "EfficientNetConfig"
- # Base docstring
- _CHECKPOINT_FOR_DOC = "google/efficientnet-b7"
- _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
- # Image classification docstring
- _IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7"
- _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
- EFFICIENTNET_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- EFFICIENTNET_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
- [`AutoImageProcessor.__call__`] for details.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- def round_filters(config: EfficientNetConfig, num_channels: int):
- r"""
- Round number of filters based on depth multiplier.
- """
- divisor = config.depth_divisor
- num_channels *= config.width_coefficient
- new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
- # Make sure that round down does not go down by more than 10%.
- if new_dim < 0.9 * num_channels:
- new_dim += divisor
- return int(new_dim)
- def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
- r"""
- Utility function to get the tuple padding value for the depthwise convolution.
- Args:
- kernel_size (`int` or `tuple`):
- Kernel size of the convolution layers.
- adjust (`bool`, *optional*, defaults to `True`):
- Adjusts padding value to apply to right and bottom sides of the input.
- """
- if isinstance(kernel_size, int):
- kernel_size = (kernel_size, kernel_size)
- correct = (kernel_size[0] // 2, kernel_size[1] // 2)
- if adjust:
- return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
- else:
- return (correct[1], correct[1], correct[0], correct[0])
- class EfficientNetEmbeddings(nn.Module):
- r"""
- A module that corresponds to the stem module of the original work.
- """
- def __init__(self, config: EfficientNetConfig):
- super().__init__()
- self.out_dim = round_filters(config, 32)
- self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
- self.convolution = nn.Conv2d(
- config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
- )
- self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
- self.activation = ACT2FN[config.hidden_act]
- def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
- features = self.padding(pixel_values)
- features = self.convolution(features)
- features = self.batchnorm(features)
- features = self.activation(features)
- return features
- class EfficientNetDepthwiseConv2d(nn.Conv2d):
- def __init__(
- self,
- in_channels,
- depth_multiplier=1,
- kernel_size=3,
- stride=1,
- padding=0,
- dilation=1,
- bias=True,
- padding_mode="zeros",
- ):
- out_channels = in_channels * depth_multiplier
- super().__init__(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- dilation=dilation,
- groups=in_channels,
- bias=bias,
- padding_mode=padding_mode,
- )
- class EfficientNetExpansionLayer(nn.Module):
- r"""
- This corresponds to the expansion phase of each block in the original implementation.
- """
- def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int):
- super().__init__()
- self.expand_conv = nn.Conv2d(
- in_channels=in_dim,
- out_channels=out_dim,
- kernel_size=1,
- padding="same",
- bias=False,
- )
- self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
- self.expand_act = ACT2FN[config.hidden_act]
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- # Expand phase
- hidden_states = self.expand_conv(hidden_states)
- hidden_states = self.expand_bn(hidden_states)
- hidden_states = self.expand_act(hidden_states)
- return hidden_states
- class EfficientNetDepthwiseLayer(nn.Module):
- r"""
- This corresponds to the depthwise convolution phase of each block in the original implementation.
- """
- def __init__(
- self,
- config: EfficientNetConfig,
- in_dim: int,
- stride: int,
- kernel_size: int,
- adjust_padding: bool,
- ):
- super().__init__()
- self.stride = stride
- conv_pad = "valid" if self.stride == 2 else "same"
- padding = correct_pad(kernel_size, adjust=adjust_padding)
- self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
- self.depthwise_conv = EfficientNetDepthwiseConv2d(
- in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
- )
- self.depthwise_norm = nn.BatchNorm2d(
- num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
- )
- self.depthwise_act = ACT2FN[config.hidden_act]
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- # Depthwise convolution
- if self.stride == 2:
- hidden_states = self.depthwise_conv_pad(hidden_states)
- hidden_states = self.depthwise_conv(hidden_states)
- hidden_states = self.depthwise_norm(hidden_states)
- hidden_states = self.depthwise_act(hidden_states)
- return hidden_states
- class EfficientNetSqueezeExciteLayer(nn.Module):
- r"""
- This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
- """
- def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False):
- super().__init__()
- self.dim = expand_dim if expand else in_dim
- self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
- self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
- self.reduce = nn.Conv2d(
- in_channels=self.dim,
- out_channels=self.dim_se,
- kernel_size=1,
- padding="same",
- )
- self.expand = nn.Conv2d(
- in_channels=self.dim_se,
- out_channels=self.dim,
- kernel_size=1,
- padding="same",
- )
- self.act_reduce = ACT2FN[config.hidden_act]
- self.act_expand = nn.Sigmoid()
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- inputs = hidden_states
- hidden_states = self.squeeze(hidden_states)
- hidden_states = self.reduce(hidden_states)
- hidden_states = self.act_reduce(hidden_states)
- hidden_states = self.expand(hidden_states)
- hidden_states = self.act_expand(hidden_states)
- hidden_states = torch.mul(inputs, hidden_states)
- return hidden_states
- class EfficientNetFinalBlockLayer(nn.Module):
- r"""
- This corresponds to the final phase of each block in the original implementation.
- """
- def __init__(
- self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
- ):
- super().__init__()
- self.apply_dropout = stride == 1 and not id_skip
- self.project_conv = nn.Conv2d(
- in_channels=in_dim,
- out_channels=out_dim,
- kernel_size=1,
- padding="same",
- bias=False,
- )
- self.project_bn = nn.BatchNorm2d(
- num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
- )
- self.dropout = nn.Dropout(p=drop_rate)
- def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
- hidden_states = self.project_conv(hidden_states)
- hidden_states = self.project_bn(hidden_states)
- if self.apply_dropout:
- hidden_states = self.dropout(hidden_states)
- hidden_states = hidden_states + embeddings
- return hidden_states
- class EfficientNetBlock(nn.Module):
- r"""
- This corresponds to the expansion and depthwise convolution phase of each block in the original implementation.
- Args:
- config ([`EfficientNetConfig`]):
- Model configuration class.
- in_dim (`int`):
- Number of input channels.
- out_dim (`int`):
- Number of output channels.
- stride (`int`):
- Stride size to be used in convolution layers.
- expand_ratio (`int`):
- Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
- kernel_size (`int`):
- Kernel size for the depthwise convolution layer.
- drop_rate (`float`):
- Dropout rate to be used in the final phase of each block.
- id_skip (`bool`):
- Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
- of each block. Set to `True` for the first block of each stage.
- adjust_padding (`bool`):
- Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
- operation, set to `True` for inputs with odd input sizes.
- """
- def __init__(
- self,
- config: EfficientNetConfig,
- in_dim: int,
- out_dim: int,
- stride: int,
- expand_ratio: int,
- kernel_size: int,
- drop_rate: float,
- id_skip: bool,
- adjust_padding: bool,
- ):
- super().__init__()
- self.expand_ratio = expand_ratio
- self.expand = True if self.expand_ratio != 1 else False
- expand_in_dim = in_dim * expand_ratio
- if self.expand:
- self.expansion = EfficientNetExpansionLayer(
- config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
- )
- self.depthwise_conv = EfficientNetDepthwiseLayer(
- config=config,
- in_dim=expand_in_dim if self.expand else in_dim,
- stride=stride,
- kernel_size=kernel_size,
- adjust_padding=adjust_padding,
- )
- self.squeeze_excite = EfficientNetSqueezeExciteLayer(
- config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
- )
- self.projection = EfficientNetFinalBlockLayer(
- config=config,
- in_dim=expand_in_dim if self.expand else in_dim,
- out_dim=out_dim,
- stride=stride,
- drop_rate=drop_rate,
- id_skip=id_skip,
- )
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- embeddings = hidden_states
- # Expansion and depthwise convolution phase
- if self.expand_ratio != 1:
- hidden_states = self.expansion(hidden_states)
- hidden_states = self.depthwise_conv(hidden_states)
- # Squeeze and excite phase
- hidden_states = self.squeeze_excite(hidden_states)
- hidden_states = self.projection(embeddings, hidden_states)
- return hidden_states
- class EfficientNetEncoder(nn.Module):
- r"""
- Forward propogates the embeddings through each EfficientNet block.
- Args:
- config ([`EfficientNetConfig`]):
- Model configuration class.
- """
- def __init__(self, config: EfficientNetConfig):
- super().__init__()
- self.config = config
- self.depth_coefficient = config.depth_coefficient
- def round_repeats(repeats):
- # Round number of block repeats based on depth multiplier.
- return int(math.ceil(self.depth_coefficient * repeats))
- num_base_blocks = len(config.in_channels)
- num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
- curr_block_num = 0
- blocks = []
- for i in range(num_base_blocks):
- in_dim = round_filters(config, config.in_channels[i])
- out_dim = round_filters(config, config.out_channels[i])
- stride = config.strides[i]
- kernel_size = config.kernel_sizes[i]
- expand_ratio = config.expand_ratios[i]
- for j in range(round_repeats(config.num_block_repeats[i])):
- id_skip = True if j == 0 else False
- stride = 1 if j > 0 else stride
- in_dim = out_dim if j > 0 else in_dim
- adjust_padding = False if curr_block_num in config.depthwise_padding else True
- drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
- block = EfficientNetBlock(
- config=config,
- in_dim=in_dim,
- out_dim=out_dim,
- stride=stride,
- kernel_size=kernel_size,
- expand_ratio=expand_ratio,
- drop_rate=drop_rate,
- id_skip=id_skip,
- adjust_padding=adjust_padding,
- )
- blocks.append(block)
- curr_block_num += 1
- self.blocks = nn.ModuleList(blocks)
- self.top_conv = nn.Conv2d(
- in_channels=out_dim,
- out_channels=round_filters(config, 1280),
- kernel_size=1,
- padding="same",
- bias=False,
- )
- self.top_bn = nn.BatchNorm2d(
- num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
- )
- self.top_activation = ACT2FN[config.hidden_act]
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> BaseModelOutputWithNoAttention:
- all_hidden_states = (hidden_states,) if output_hidden_states else None
- for block in self.blocks:
- hidden_states = block(hidden_states)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- hidden_states = self.top_conv(hidden_states)
- hidden_states = self.top_bn(hidden_states)
- hidden_states = self.top_activation(hidden_states)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
- return BaseModelOutputWithNoAttention(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- )
- class EfficientNetPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = EfficientNetConfig
- base_model_prefix = "efficientnet"
- main_input_name = "pixel_values"
- _no_split_modules = []
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Conv2d)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- @add_start_docstrings(
- "The bare EfficientNet model outputting raw features without any specific head on top.",
- EFFICIENTNET_START_DOCSTRING,
- )
- class EfficientNetModel(EfficientNetPreTrainedModel):
- def __init__(self, config: EfficientNetConfig):
- super().__init__(config)
- self.config = config
- self.embeddings = EfficientNetEmbeddings(config)
- self.encoder = EfficientNetEncoder(config)
- # Final pooling layer
- if config.pooling_type == "mean":
- self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
- elif config.pooling_type == "max":
- self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
- else:
- raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPoolingAndNoAttention,
- config_class=_CONFIG_FOR_DOC,
- modality="vision",
- expected_output=_EXPECTED_OUTPUT_SHAPE,
- )
- def forward(
- self,
- pixel_values: torch.FloatTensor = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if pixel_values is None:
- raise ValueError("You have to specify pixel_values")
- embedding_output = self.embeddings(pixel_values)
- encoder_outputs = self.encoder(
- embedding_output,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- # Apply pooling
- last_hidden_state = encoder_outputs[0]
- pooled_output = self.pooler(last_hidden_state)
- # Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280)
- pooled_output = pooled_output.reshape(pooled_output.shape[:2])
- if not return_dict:
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndNoAttention(
- last_hidden_state=last_hidden_state,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- )
- @add_start_docstrings(
- """
- EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g.
- for ImageNet.
- """,
- EFFICIENTNET_START_DOCSTRING,
- )
- class EfficientNetForImageClassification(EfficientNetPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.config = config
- self.efficientnet = EfficientNetModel(config)
- # Classifier head
- self.dropout = nn.Dropout(p=config.dropout_rate)
- self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity()
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_IMAGE_CLASS_CHECKPOINT,
- output_type=ImageClassifierOutputWithNoAttention,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
- )
- def forward(
- self,
- pixel_values: torch.FloatTensor = None,
- labels: Optional[torch.LongTensor] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
- pooled_output = outputs.pooler_output if return_dict else outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return ImageClassifierOutputWithNoAttention(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- )
|