| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- # Copyright 2021 AlQuraishi Laboratory
- # Copyright 2021 DeepMind Technologies Limited
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Dict, Tuple, overload
- import torch
- import torch.types
- from torch import nn
- from . import residue_constants as rc
- from .rigid_utils import Rigid, Rotation
- from .tensor_utils import batched_gather
- @overload
- def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor: ...
- @overload
- def pseudo_beta_fn(
- aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor
- ) -> Tuple[torch.Tensor, torch.Tensor]: ...
- def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
- is_gly = aatype == rc.restype_order["G"]
- ca_idx = rc.atom_order["CA"]
- cb_idx = rc.atom_order["CB"]
- pseudo_beta = torch.where(
- is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3),
- all_atom_positions[..., ca_idx, :],
- all_atom_positions[..., cb_idx, :],
- )
- if all_atom_masks is not None:
- pseudo_beta_mask = torch.where(
- is_gly,
- all_atom_masks[..., ca_idx],
- all_atom_masks[..., cb_idx],
- )
- return pseudo_beta, pseudo_beta_mask
- else:
- return pseudo_beta
- def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
- atom37_data = batched_gather(
- atom14,
- batch["residx_atom37_to_atom14"],
- dim=-2,
- no_batch_dims=len(atom14.shape[:-2]),
- )
- atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]
- return atom37_data
- def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor:
- template_aatype = template_feats["template_aatype"]
- torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"]
- alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"]
- torsion_angles_mask = template_feats["template_torsion_angles_mask"]
- template_angle_feat = torch.cat(
- [
- nn.functional.one_hot(template_aatype, 22),
- torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14),
- alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14),
- torsion_angles_mask,
- ],
- dim=-1,
- )
- return template_angle_feat
- def build_template_pair_feat(
- batch: Dict[str, torch.Tensor],
- min_bin: torch.types.Number,
- max_bin: torch.types.Number,
- no_bins: int,
- use_unit_vector: bool = False,
- eps: float = 1e-20,
- inf: float = 1e8,
- ) -> torch.Tensor:
- template_mask = batch["template_pseudo_beta_mask"]
- template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
- # Compute distogram (this seems to differ slightly from Alg. 5)
- tpb = batch["template_pseudo_beta"]
- dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True)
- lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2
- upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
- dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)
- to_concat = [dgram, template_mask_2d[..., None]]
- aatype_one_hot: torch.LongTensor = nn.functional.one_hot(
- batch["template_aatype"],
- rc.restype_num + 2,
- )
- n_res = batch["template_aatype"].shape[-1]
- to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1))
- to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1))
- n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]]
- rigids = Rigid.make_transform_from_reference(
- n_xyz=batch["template_all_atom_positions"][..., n, :],
- ca_xyz=batch["template_all_atom_positions"][..., ca, :],
- c_xyz=batch["template_all_atom_positions"][..., c, :],
- eps=eps,
- )
- points = rigids.get_trans()[..., None, :, :]
- rigid_vec = rigids[..., None].invert_apply(points)
- inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1))
- t_aa_masks = batch["template_all_atom_mask"]
- template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c]
- template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
- inv_distance_scalar = inv_distance_scalar * template_mask_2d
- unit_vector = rigid_vec * inv_distance_scalar[..., None]
- if not use_unit_vector:
- unit_vector = unit_vector * 0.0
- to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1))
- to_concat.append(template_mask_2d[..., None])
- act = torch.cat(to_concat, dim=-1)
- act = act * template_mask_2d[..., None]
- return act
- def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor:
- msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23)
- msa_feat = [
- msa_1hot,
- batch["extra_has_deletion"].unsqueeze(-1),
- batch["extra_deletion_value"].unsqueeze(-1),
- ]
- return torch.cat(msa_feat, dim=-1)
- def torsion_angles_to_frames(
- r: Rigid,
- alpha: torch.Tensor,
- aatype: torch.Tensor,
- rrgdf: torch.Tensor,
- ) -> Rigid:
- # [*, N, 8, 4, 4]
- default_4x4 = rrgdf[aatype, ...]
- # [*, N, 8] transformations, i.e.
- # One [*, N, 8, 3, 3] rotation matrix and
- # One [*, N, 8, 3] translation matrix
- default_r = r.from_tensor_4x4(default_4x4)
- bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2))
- bb_rot[..., 1] = 1
- # [*, N, 8, 2]
- alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2)
- # [*, N, 8, 3, 3]
- # Produces rotation matrices of the form:
- # [
- # [1, 0 , 0 ],
- # [0, a_2,-a_1],
- # [0, a_1, a_2]
- # ]
- # This follows the original code rather than the supplement, which uses
- # different indices.
- all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape)
- all_rots[..., 0, 0] = 1
- all_rots[..., 1, 1] = alpha[..., 1]
- all_rots[..., 1, 2] = -alpha[..., 0]
- all_rots[..., 2, 1:] = alpha
- all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None))
- chi2_frame_to_frame = all_frames[..., 5]
- chi3_frame_to_frame = all_frames[..., 6]
- chi4_frame_to_frame = all_frames[..., 7]
- chi1_frame_to_bb = all_frames[..., 4]
- chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
- chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
- chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)
- all_frames_to_bb = Rigid.cat(
- [
- all_frames[..., :5],
- chi2_frame_to_bb.unsqueeze(-1),
- chi3_frame_to_bb.unsqueeze(-1),
- chi4_frame_to_bb.unsqueeze(-1),
- ],
- dim=-1,
- )
- all_frames_to_global = r[..., None].compose(all_frames_to_bb)
- return all_frames_to_global
- def frames_and_literature_positions_to_atom14_pos(
- r: Rigid,
- aatype: torch.Tensor,
- default_frames: torch.Tensor,
- group_idx: torch.Tensor,
- atom_mask: torch.Tensor,
- lit_positions: torch.Tensor,
- ) -> torch.Tensor:
- # [*, N, 14]
- group_mask = group_idx[aatype, ...]
- # [*, N, 14, 8]
- group_mask_one_hot: torch.LongTensor = nn.functional.one_hot(
- group_mask,
- num_classes=default_frames.shape[-3],
- )
- # [*, N, 14, 8]
- t_atoms_to_global = r[..., None, :] * group_mask_one_hot
- # [*, N, 14]
- t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1))
- # [*, N, 14, 1]
- atom_mask = atom_mask[aatype, ...].unsqueeze(-1)
- # [*, N, 14, 3]
- lit_positions = lit_positions[aatype, ...]
- pred_positions = t_atoms_to_global.apply(lit_positions)
- pred_positions = pred_positions * atom_mask
- return pred_positions
|