| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for Flava."""
- import math
- import random
- from functools import lru_cache
- from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import resize, to_channel_dimension_format
- from ...image_utils import (
- OPENAI_CLIP_MEAN,
- OPENAI_CLIP_STD,
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- infer_channel_dimension_format,
- is_scaled_image,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
- if is_vision_available():
- import PIL
- logger = logging.get_logger(__name__)
- # These values are taken from CLIP
- FLAVA_IMAGE_MEAN = OPENAI_CLIP_MEAN
- FLAVA_IMAGE_STD = OPENAI_CLIP_STD
- FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0]
- FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0]
- LOGIT_LAPLACE_EPS: float = 0.1
- # Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py
- class FlavaMaskingGenerator:
- def __init__(
- self,
- input_size: Union[int, Tuple[int, int]] = 14,
- total_mask_patches: int = 75,
- mask_group_max_patches: Optional[int] = None,
- mask_group_min_patches: int = 16,
- mask_group_min_aspect_ratio: Optional[float] = 0.3,
- mask_group_max_aspect_ratio: float = None,
- ):
- if not isinstance(input_size, tuple):
- input_size = (input_size,) * 2
- self.height, self.width = input_size
- self.num_patches = self.height * self.width
- self.total_mask_patches = total_mask_patches
- self.mask_group_min_patches = mask_group_min_patches
- self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
- mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
- self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
- def __repr__(self):
- repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
- self.height,
- self.width,
- self.mask_group_min_patches,
- self.mask_group_max_patches,
- self.total_mask_patches,
- self.log_aspect_ratio[0],
- self.log_aspect_ratio[1],
- )
- return repr_str
- def get_shape(self):
- return self.height, self.width
- def _mask(self, mask, max_mask_patches):
- delta = 0
- for _attempt in range(10):
- target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
- aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
- height = int(round(math.sqrt(target_area * aspect_ratio)))
- width = int(round(math.sqrt(target_area / aspect_ratio)))
- if width < self.width and height < self.height:
- top = random.randint(0, self.height - height)
- left = random.randint(0, self.width - width)
- num_masked = mask[top : top + height, left : left + width].sum()
- # Overlap
- if 0 < height * width - num_masked <= max_mask_patches:
- for i in range(top, top + height):
- for j in range(left, left + width):
- if mask[i, j] == 0:
- mask[i, j] = 1
- delta += 1
- if delta > 0:
- break
- return delta
- def __call__(self):
- mask = np.zeros(shape=self.get_shape(), dtype=int)
- mask_count = 0
- while mask_count < self.total_mask_patches:
- max_mask_patches = self.total_mask_patches - mask_count
- max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
- delta = self._mask(mask, max_mask_patches)
- if delta == 0:
- break
- else:
- mask_count += delta
- return mask
- class FlavaImageProcessor(BaseImageProcessor):
- r"""
- Constructs a Flava image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
- `do_resize` parameter in `preprocess`.
- size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
- Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in
- `preprocess`.
- do_center_crop (`bool`, *optional*, defaults to `True`):
- Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`.
- crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
- Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the
- `crop_size` parameter in `preprocess`.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
- parameter in `preprocess`.
- rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in
- `preprocess`.
- do_normalize (`bool`, *optional*, defaults to `True`):
- Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`.
- image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
- Mean to use if normalizing the image. This is a float or list of floats the length of the number of
- channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
- image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
- Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
- number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
- return_image_mask (`bool`, *optional*, defaults to `False`):
- Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`.
- input_size_patches (`int`, *optional*, defaults to 14):
- Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden
- by the `input_size_patches` parameter in `preprocess`.
- total_mask_patches (`int`, *optional*, defaults to 75):
- Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in
- `preprocess`.
- mask_group_min_patches (`int`, *optional*, defaults to 16):
- Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches`
- parameter in `preprocess`.
- mask_group_max_patches (`int`, *optional*):
- Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches`
- parameter in `preprocess`.
- mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
- Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter
- in `preprocess`.
- mask_group_max_aspect_ratio (`float`, *optional*):
- Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter
- in `preprocess`.
- codebook_do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize`
- parameter in `preprocess`. `codebook_size`.
- codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
- Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in
- `preprocess`.
- codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
- Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample`
- parameter in `preprocess`.
- codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
- Whether to crop the input for codebook at the center. If the input size is smaller than
- `codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be
- overridden by the `codebook_do_center_crop` parameter in `preprocess`.
- codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
- Desired output size for codebook input when applying center-cropping. Can be overridden by the
- `codebook_crop_size` parameter in `preprocess`.
- codebook_do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be
- overridden by the `codebook_do_rescale` parameter in `preprocess`.
- codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Defines the scale factor to use if rescaling the codebook image. Can be overridden by the
- `codebook_rescale_factor` parameter in `preprocess`.
- codebook_do_map_pixels (`bool`, *optional*, defaults to `True`):
- Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the
- `codebook_do_map_pixels` parameter in `preprocess`.
- codebook_do_normalize (`bool`, *optional*, defaults to `True`):
- Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can
- be overridden by the `codebook_do_normalize` parameter in `preprocess`.
- codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`):
- The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden
- by the `codebook_image_mean` parameter in `preprocess`.
- codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
- The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can
- be overridden by the `codebook_image_std` parameter in `preprocess`.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- do_center_crop: bool = True,
- crop_size: Dict[str, int] = None,
- do_rescale: bool = True,
- rescale_factor: Union[int, float] = 1 / 255,
- do_normalize: bool = True,
- image_mean: Optional[Union[float, Iterable[float]]] = None,
- image_std: Optional[Union[float, Iterable[float]]] = None,
- # Mask related params
- return_image_mask: bool = False,
- input_size_patches: int = 14,
- total_mask_patches: int = 75,
- mask_group_min_patches: int = 16,
- mask_group_max_patches: Optional[int] = None,
- mask_group_min_aspect_ratio: float = 0.3,
- mask_group_max_aspect_ratio: Optional[float] = None,
- # Codebook related params
- return_codebook_pixels: bool = False,
- codebook_do_resize: bool = True,
- codebook_size: bool = None,
- codebook_resample: int = PILImageResampling.LANCZOS,
- codebook_do_center_crop: bool = True,
- codebook_crop_size: int = None,
- codebook_do_rescale: bool = True,
- codebook_rescale_factor: Union[int, float] = 1 / 255,
- codebook_do_map_pixels: bool = True,
- codebook_do_normalize: bool = True,
- codebook_image_mean: Optional[Union[float, Iterable[float]]] = None,
- codebook_image_std: Optional[Union[float, Iterable[float]]] = None,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- size = size if size is not None else {"height": 224, "width": 224}
- size = get_size_dict(size)
- crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
- crop_size = get_size_dict(crop_size, param_name="crop_size")
- codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
- codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
- codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
- codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
- self.do_resize = do_resize
- self.size = size
- self.resample = resample
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- self.do_center_crop = do_center_crop
- self.crop_size = crop_size
- self.do_normalize = do_normalize
- self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN
- self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD
- self.return_image_mask = return_image_mask
- self.input_size_patches = input_size_patches
- self.total_mask_patches = total_mask_patches
- self.mask_group_min_patches = mask_group_min_patches
- self.mask_group_max_patches = mask_group_max_patches
- self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
- self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
- self.return_codebook_pixels = return_codebook_pixels
- self.codebook_do_resize = codebook_do_resize
- self.codebook_size = codebook_size
- self.codebook_resample = codebook_resample
- self.codebook_do_center_crop = codebook_do_center_crop
- self.codebook_crop_size = codebook_crop_size
- self.codebook_do_rescale = codebook_do_rescale
- self.codebook_rescale_factor = codebook_rescale_factor
- self.codebook_do_map_pixels = codebook_do_map_pixels
- self.codebook_do_normalize = codebook_do_normalize
- self.codebook_image_mean = codebook_image_mean
- self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
- self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
- @classmethod
- def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
- """
- Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
- created using from_dict and kwargs e.g. `FlavaImageProcessor.from_pretrained(checkpoint, codebook_size=600)`
- """
- image_processor_dict = image_processor_dict.copy()
- if "codebook_size" in kwargs:
- image_processor_dict["codebook_size"] = kwargs.pop("codebook_size")
- if "codebook_crop_size" in kwargs:
- image_processor_dict["codebook_crop_size"] = kwargs.pop("codebook_crop_size")
- return super().from_dict(image_processor_dict, **kwargs)
- @lru_cache()
- def masking_generator(
- self,
- input_size_patches,
- total_mask_patches,
- mask_group_min_patches,
- mask_group_max_patches,
- mask_group_min_aspect_ratio,
- mask_group_max_aspect_ratio,
- ) -> FlavaMaskingGenerator:
- return FlavaMaskingGenerator(
- input_size=input_size_patches,
- total_mask_patches=total_mask_patches,
- mask_group_min_patches=mask_group_min_patches,
- mask_group_max_patches=mask_group_max_patches,
- mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
- mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
- )
- # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image to `(size["height"], size["width"])`.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
- data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the output image. If unset, the channel dimension format of the input
- image is used. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- Returns:
- `np.ndarray`: The resized image.
- """
- size = get_size_dict(size)
- if "height" not in size or "width" not in size:
- raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
- output_size = (size["height"], size["width"])
- return resize(
- image,
- size=output_size,
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- def map_pixels(self, image: np.ndarray) -> np.ndarray:
- return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
- def _preprocess_image(
- self,
- image: ImageInput,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_center_crop: bool = None,
- crop_size: Dict[str, int] = None,
- do_rescale: bool = None,
- rescale_factor: float = None,
- do_normalize: bool = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_map_pixels: bool = None,
- data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
- input_data_format: Optional[ChannelDimension] = None,
- ) -> np.ndarray:
- """Preprocesses a single image."""
- validate_preprocess_arguments(
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- # All transformations expect numpy arrays.
- image = to_numpy_array(image)
- if is_scaled_image(image) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(image)
- if do_resize:
- image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
- if do_center_crop:
- image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
- if do_rescale:
- image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- if do_normalize:
- image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
- if do_map_pixels:
- image = self.map_pixels(image)
- if data_format is not None:
- image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
- return image
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- do_resize: Optional[bool] = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_center_crop: Optional[bool] = None,
- crop_size: Optional[Dict[str, int]] = None,
- do_rescale: Optional[bool] = None,
- rescale_factor: Optional[float] = None,
- do_normalize: Optional[bool] = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- # Mask related params
- return_image_mask: Optional[bool] = None,
- input_size_patches: Optional[int] = None,
- total_mask_patches: Optional[int] = None,
- mask_group_min_patches: Optional[int] = None,
- mask_group_max_patches: Optional[int] = None,
- mask_group_min_aspect_ratio: Optional[float] = None,
- mask_group_max_aspect_ratio: Optional[float] = None,
- # Codebook related params
- return_codebook_pixels: Optional[bool] = None,
- codebook_do_resize: Optional[bool] = None,
- codebook_size: Optional[Dict[str, int]] = None,
- codebook_resample: Optional[int] = None,
- codebook_do_center_crop: Optional[bool] = None,
- codebook_crop_size: Optional[Dict[str, int]] = None,
- codebook_do_rescale: Optional[bool] = None,
- codebook_rescale_factor: Optional[float] = None,
- codebook_do_map_pixels: Optional[bool] = None,
- codebook_do_normalize: Optional[bool] = None,
- codebook_image_mean: Optional[Iterable[float]] = None,
- codebook_image_std: Optional[Iterable[float]] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: ChannelDimension = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the image.
- resample (`int`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
- has an effect if `do_resize` is set to `True`.
- do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
- Whether to center crop the image.
- crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
- Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image values between [0 - 1].
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image.
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
- Image mean.
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
- Image standard deviation.
- return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`):
- Whether to return the image mask.
- input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`):
- Size of the patches to extract from the image.
- total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`):
- Total number of patches to extract from the image.
- mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`):
- Minimum number of patches to extract from the image.
- mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`):
- Maximum number of patches to extract from the image.
- mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`):
- Minimum aspect ratio of the patches to extract from the image.
- mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`):
- Maximum aspect ratio of the patches to extract from the image.
- return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`):
- Whether to return the codebook pixels.
- codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`):
- Whether to resize the codebook pixels.
- codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`):
- Size of the codebook pixels.
- codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`):
- Resampling filter to use if resizing the codebook pixels. This can be one of the enum
- `PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`.
- codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`):
- Whether to center crop the codebook pixels.
- codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`):
- Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set
- to `True`.
- codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`):
- Whether to rescale the codebook pixels values between [0 - 1].
- codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`):
- Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`.
- codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`):
- Whether to map the codebook pixels values.
- codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`):
- Whether to normalize the codebook pixels.
- codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`):
- Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`.
- codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`):
- Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is
- set to `True`.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- size = get_size_dict(size)
- resample = resample if resample is not None else self.resample
- do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
- crop_size = crop_size if crop_size is not None else self.crop_size
- crop_size = get_size_dict(crop_size, param_name="crop_size")
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- image_mean = image_mean if image_mean is not None else self.image_mean
- image_std = image_std if image_std is not None else self.image_std
- return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask
- input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches
- total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches
- mask_group_min_patches = (
- mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches
- )
- mask_group_max_patches = (
- mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches
- )
- mask_group_min_aspect_ratio = (
- mask_group_min_aspect_ratio
- if mask_group_min_aspect_ratio is not None
- else self.mask_group_min_aspect_ratio
- )
- mask_group_max_aspect_ratio = (
- mask_group_max_aspect_ratio
- if mask_group_max_aspect_ratio is not None
- else self.mask_group_max_aspect_ratio
- )
- return_codebook_pixels = (
- return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels
- )
- codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize
- codebook_size = codebook_size if codebook_size is not None else self.codebook_size
- codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
- codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample
- codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale
- codebook_rescale_factor = (
- codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor
- )
- codebook_do_center_crop = (
- codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop
- )
- codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size
- codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
- codebook_do_map_pixels = (
- codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels
- )
- codebook_do_normalize = (
- codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize
- )
- codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean
- codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- processed_images = [
- self._preprocess_image(
- image=img,
- do_resize=do_resize,
- size=size,
- resample=resample,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_map_pixels=False,
- data_format=data_format,
- input_data_format=input_data_format,
- )
- for img in images
- ]
- data = {"pixel_values": processed_images}
- if return_codebook_pixels:
- codebook_images = [
- self._preprocess_image(
- image=img,
- do_resize=codebook_do_resize,
- size=codebook_size,
- resample=codebook_resample,
- do_center_crop=codebook_do_center_crop,
- crop_size=codebook_crop_size,
- do_rescale=codebook_do_rescale,
- rescale_factor=codebook_rescale_factor,
- do_normalize=codebook_do_normalize,
- image_mean=codebook_image_mean,
- image_std=codebook_image_std,
- do_map_pixels=codebook_do_map_pixels,
- data_format=data_format,
- input_data_format=input_data_format,
- )
- for img in images
- ]
- data["codebook_pixel_values"] = codebook_images
- if return_image_mask:
- mask_generator = self.masking_generator(
- input_size_patches=input_size_patches,
- total_mask_patches=total_mask_patches,
- mask_group_min_patches=mask_group_min_patches,
- mask_group_max_patches=mask_group_max_patches,
- mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
- mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
- )
- masks = [mask_generator() for _ in images]
- data["bool_masked_pos"] = masks
- return BatchFeature(data=data, tensor_type=return_tensors)
|