| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104 |
- # coding=utf-8
- # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch FLAVA model."""
- import collections
- import math
- from collections import OrderedDict
- from dataclasses import dataclass
- from typing import Any, Dict, List, Optional, Set, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from ...activations import ACT2FN
- from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
- from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import (
- ModelOutput,
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- torch_int,
- )
- from .configuration_flava import (
- FlavaConfig,
- FlavaImageCodebookConfig,
- FlavaImageConfig,
- FlavaMultimodalConfig,
- FlavaTextConfig,
- )
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "facebook/flava-full"
- # Codebook docstring
- _CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook"
- _CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig"
- _CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig"
- _CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig"
- _EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768]
- LOGIT_SCALE_CLAMP_MIN = 0
- LOGIT_SCALE_CLAMP_MAX = 4.6052
- FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig]
- @dataclass
- class FlavaModelOutput(ModelOutput):
- """
- Output from FlavaModel containing embeddings and outputs from individual encoders.
- Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
- transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
- `text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
- Args:
- image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
- The image embeddings which are basically the pooled output of [`FlavaImageModel`].
- image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
- The output of the [`FlavaImageModel`].
- text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
- The text embeddings which are basically the pooled output of [`FlavaTextModel`].
- text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
- The output of the [`FlavaTextModel`].
- multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
- The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
- multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
- The output of the [`FlavaMultimodalModel`].
- """
- image_embeddings: Optional[torch.FloatTensor] = None
- image_output: Optional[BaseModelOutputWithPooling] = None
- text_embeddings: Optional[torch.FloatTensor] = None
- text_output: Optional[BaseModelOutputWithPooling] = None
- multimodal_embeddings: Optional[torch.FloatTensor] = None
- multimodal_output: Optional[BaseModelOutputWithPooling] = None
- def to_tuple(self) -> Tuple[Any]:
- return tuple(
- self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple()
- for k in self.keys()
- )
- @dataclass
- class FlavaLosses(ModelOutput):
- """Class representing pretraining losses from FLAVA model
- Args:
- mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
- Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
- mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
- Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
- itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
- Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
- masked pairs in FLAVA.
- global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
- Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
- data. This is calculated on unmasked images and texts.
- mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
- Masked Multimodal Modeling loss's image component calculated on paired image-text data.
- mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
- Masked Multimodal Modeling loss's text component calculated on paired image-text data.
- """
- mim: Optional[torch.FloatTensor] = None
- mlm: Optional[torch.FloatTensor] = None
- itm: Optional[torch.FloatTensor] = None
- global_contrastive: Optional[torch.FloatTensor] = None
- mmm_image: Optional[torch.FloatTensor] = None
- mmm_text: Optional[torch.FloatTensor] = None
- def all_none(self) -> bool:
- all_none = True
- for v in self.values():
- if v is not None:
- all_none = False
- break
- return all_none
- @dataclass
- class FlavaForPreTrainingOutput(ModelOutput):
- """
- Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
- Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
- transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
- `text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
- Args:
- loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
- Total loss calculated for this model.
- loss_info (`FlavaLosses`):
- Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
- the keys.
- image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
- The image embeddings which are basically the pooled output of [`FlavaImageModel`].
- image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
- The output of the [`FlavaImageModel`].
- text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
- The text embeddings which are basically the pooled output of [`FlavaTextModel`].
- text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
- The output of the [`FlavaTextModel`].
- multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
- The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
- multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
- The output of the [`FlavaMultimodalModel`].
- image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
- The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
- to create masked images.
- image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
- The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
- text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
- The text embeddings which are basically the pooled output of [`FlavaTextModel`].
- text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
- The output of the [`FlavaTextModel`].
- multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
- The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
- multimodal_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
- The output of the [`FlavaMultimodalModel`].
- mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
- The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
- returned when `bool_masked_pos` has some of the patches masked.
- mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
- The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
- the tokens masked.
- itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
- The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
- mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
- The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
- output is returned when `bool_masked_pos` has some of the patches masked.
- mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
- The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
- some of the tokens masked.
- contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
- The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
- `image_projection` and `text_projection` layers respectively. This represents the image-text similarity
- scores. This is calculated on unmasked images and texts.
- contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
- The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
- `text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
- texts.
- """
- loss: Optional[torch.FloatTensor] = None
- loss_info: FlavaLosses = None
- image_embeddings: Optional[torch.FloatTensor] = None
- image_output: Optional[BaseModelOutputWithPooling] = None
- text_embeddings: Optional[torch.FloatTensor] = None
- text_output: Optional[BaseModelOutputWithPooling] = None
- multimodal_embeddings: Optional[torch.FloatTensor] = None
- multimodal_output: Optional[BaseModelOutputWithPooling] = None
- image_masked_embeddings: Optional[torch.FloatTensor] = None
- image_masked_output: Optional[BaseModelOutputWithPooling] = None
- text_masked_embeddings: Optional[torch.FloatTensor] = None
- text_masked_output: Optional[BaseModelOutputWithPooling] = None
- multimodal_masked_embeddings: Optional[torch.FloatTensor] = None
- multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None
- mim_logits: Optional[torch.FloatTensor] = None
- mlm_logits: Optional[torch.FloatTensor] = None
- itm_logits: Optional[torch.FloatTensor] = None
- contrastive_logits_per_image: Optional[torch.FloatTensor] = None
- contrastive_logits_per_text: Optional[torch.FloatTensor] = None
- mmm_image_logits: Optional[torch.FloatTensor] = None
- mmm_text_logits: Optional[torch.FloatTensor] = None
- def to_tuple(self) -> Tuple[Any]:
- transformer_outputs = [
- "text_output",
- "image_output",
- "multimodal_output",
- "text_masked_output",
- "image_masked_output",
- "multimodal_masked_output",
- ]
- return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys())
- # Based on timm implementation, which can be found here:
- # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
- class FlavaImageEmbeddings(nn.Module):
- """
- Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
- """
- def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None:
- super().__init__()
- use_mask_token = use_mask_token or config.mask_token
- self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
- self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
- self.patch_embeddings = PatchEmbeddings(
- image_size=config.image_size,
- patch_size=config.patch_size,
- num_channels=config.num_channels,
- embed_dim=config.hidden_size,
- )
- num_patches = self.patch_embeddings.num_patches
- self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.patch_size = config.patch_size
- self.config = config
- # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding
- def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
- """
- This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
- images. This method is also adapted to support torch.jit tracing.
- Adapted from:
- - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
- """
- num_patches = embeddings.shape[1] - 1
- num_positions = self.position_embeddings.shape[1] - 1
- # always interpolate when tracing to ensure the exported model works for dynamic input shapes
- if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
- return self.position_embeddings
- class_pos_embed = self.position_embeddings[:, :1]
- patch_pos_embed = self.position_embeddings[:, 1:]
- dim = embeddings.shape[-1]
- new_height = height // self.patch_size
- new_width = width // self.patch_size
- sqrt_num_positions = torch_int(num_positions**0.5)
- patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
- patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
- patch_pos_embed = nn.functional.interpolate(
- patch_pos_embed,
- size=(new_height, new_width),
- mode="bicubic",
- align_corners=False,
- )
- patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
- return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
- def forward(
- self,
- pixel_values: torch.Tensor,
- bool_masked_pos: Optional[torch.BoolTensor] = None,
- interpolate_pos_encoding: bool = False,
- ) -> torch.Tensor:
- batch_size, num_channels, height, width = pixel_values.shape
- embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
- batch_size, seq_len, _ = embeddings.size()
- if bool_masked_pos is not None:
- mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
- # B X H X W = B X HW
- if bool_masked_pos.dim() == 3:
- bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1)
- # replace the masked visual tokens by mask_tokens
- mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
- embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
- # add the [CLS] token to the embedded patch tokens
- cls_tokens = self.cls_token.expand(batch_size, -1, -1)
- embeddings = torch.cat((cls_tokens, embeddings), dim=1)
- # add positional encoding to each token
- if interpolate_pos_encoding:
- embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
- else:
- embeddings = embeddings + self.position_embeddings
- embeddings = self.dropout(embeddings)
- return embeddings
- # Based on timm implementation, which can be found here:
- # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
- class PatchEmbeddings(nn.Module):
- """
- Image to Patch Embedding.
- """
- def __init__(
- self,
- image_size: int = 224,
- patch_size: Union[int, Tuple[int, int]] = 16,
- num_channels: int = 3,
- embed_dim: int = 768,
- ):
- super().__init__()
- if not isinstance(image_size, collections.abc.Iterable):
- image_size = (image_size, image_size)
- if not isinstance(patch_size, collections.abc.Iterable):
- patch_size = (patch_size, patch_size)
- num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
- self.image_size = image_size
- self.patch_size = patch_size
- self.num_patches = num_patches
- self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
- def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
- batch_size, num_channels, height, width = pixel_values.shape
- if not interpolate_pos_encoding:
- if height != self.image_size[0] or width != self.image_size[1]:
- raise ValueError(
- f"Input image size ({height}*{width}) doesn't match model"
- f" ({self.image_size[0]}*{self.image_size[1]})."
- )
- x = self.projection(pixel_values).flatten(2).transpose(1, 2)
- return x
- class FlavaTextEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings."""
- def __init__(self, config):
- super().__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- self.register_buffer(
- "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- ):
- input_shape = input_ids.size()
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
- # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
- # issue #5664
- if token_type_ids is None:
- if hasattr(self, "token_type_ids"):
- buffered_token_type_ids = self.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
- inputs_embeds = self.word_embeddings(input_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings = inputs_embeds + token_type_embeddings
- if self.position_embedding_type == "absolute":
- position_embeddings = self.position_embeddings(position_ids)
- embeddings += position_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- class FlavaSelfAttention(nn.Module):
- def __init__(self, config: FlavaPossibleConfigs) -> None:
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
- f"heads {config.num_attention_heads}."
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
- self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
- self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
- mixed_query_layer = self.query(hidden_states)
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- query_layer = self.transpose_for_scores(mixed_query_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
- attention_scores = attention_scores + attention_mask
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(*new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- return outputs
- class FlavaSelfOutput(nn.Module):
- """
- The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
- models), due to the layernorm applied before each block.
- """
- def __init__(self, config: FlavaPossibleConfigs) -> None:
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
- class FlavaAttention(nn.Module):
- def __init__(self, config: FlavaPossibleConfigs) -> None:
- super().__init__()
- self.attention = FlavaSelfAttention(config)
- self.output = FlavaSelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads: Set[int]) -> None:
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.attention.query = prune_linear_layer(self.attention.query, index)
- self.attention.key = prune_linear_layer(self.attention.key, index)
- self.attention.value = prune_linear_layer(self.attention.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
- self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
- self_outputs = self.attention(
- hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions
- )
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- class FlavaIntermediate(nn.Module):
- def __init__(self, config: FlavaPossibleConfigs) -> None:
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- # Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- class FlavaOutput(nn.Module):
- def __init__(self, config: FlavaPossibleConfigs) -> None:
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # Copied from transformers.models.vit.modeling_vit.ViTOutput.forward
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = hidden_states + input_tensor
- return hidden_states
- class FlavaLayer(nn.Module):
- """This corresponds to the Block class in the timm implementation."""
- def __init__(self, config: FlavaPossibleConfigs) -> None:
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = FlavaAttention(config)
- self.intermediate = FlavaIntermediate(config)
- self.output = FlavaOutput(config)
- # TODO: Check fp32 layer norm possiblity
- self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
- self_attention_outputs = self.attention(
- self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
- attention_mask=attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- )
- attention_output = self_attention_outputs[0]
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- # first residual connection
- hidden_states = attention_output + hidden_states
- # in ViT, layernorm is also applied after self-attention
- layer_output = self.layernorm_after(hidden_states)
- layer_output = self.intermediate(layer_output)
- # second residual connection is done here
- layer_output = self.output(layer_output, hidden_states)
- outputs = (layer_output,) + outputs
- return outputs
- class FlavaEncoder(nn.Module):
- def __init__(self, config: FlavaConfig) -> None:
- super().__init__()
- self.config = config
- self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- output_hidden_states: bool = False,
- return_dict: bool = True,
- ) -> Union[tuple, BaseModelOutput]:
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- attention_mask,
- layer_head_mask,
- output_attentions,
- )
- else:
- layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
- )
- class FlavaPooler(nn.Module):
- def __init__(self, config: FlavaPossibleConfigs):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states: torch.Tensor):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- FLAVA_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`{config}`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- FLAVA_INPUTS_DOCSTRING_COMMON = r"""
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
- [`FlavaImageProcessor.__call__`] for details.
- bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
- Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
- interpolate_pos_encoding (`bool`, *optional*):
- Whether to interpolate the pre-trained position encodings.
- """
- FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
- FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
- [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
- IDs?](../glossary#input-ids)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- """
- FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
- FLAVA_MULTIMODAL_INPUTS_DOCSTRING = (
- r"""
- Args:
- hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
- The concatenated hidden states of unimodal encoders.
- """
- + FLAVA_INPUTS_DOCSTRING_COMMON
- )
- FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r"""
- Args:
- skip_multimodal_encoder (*bool*, *optional*):
- Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
- """
- FLAVA_MODEL_INPUTS_DOCSTRING = (
- FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
- + FLAVA_TEXT_INPUTS_DOCSTRING_BASE
- + FLAVA_INPUTS_DOCSTRING_COMMON
- + FLAVA_MODEL_INPUTS_DOCSTRING_BASE
- )
- FLAVA_PRETRAINING_INPUTS_DOCSTRING = (
- r"""
- Args:
- input_ids_masked (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
- to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
- [`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
- """
- + FLAVA_TEXT_INPUTS_DOCSTRING_BASE
- + FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
- + r"""
- image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*):
- Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
- in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- skip_unmasked_multimodal_encoder (*bool*, *optional*):
- Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
- multimodal embeddings or outputs as of now.
- mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
- Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
- Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
- indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
- ..., text_config.vocab_size - 1]`.
- mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
- Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
- image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
- computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
- generated automatically using the image codebook assigned to the model. By default, it uses
- [`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.
- itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
- Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
- The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
- return_loss (`bool`, *optional*, default to None):
- Whether to return calculated loss or not.
- """
- + FLAVA_INPUTS_DOCSTRING_COMMON
- )
- FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r"""
- Parameters:
- image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will
- be initialized using the image_codebook_config defined in the config first as the first parameter.
- """
- class FlavaPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = FlavaConfig
- base_model_prefix = "flava"
- supports_gradient_checkpointing = True
- def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Conv2d)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- @add_start_docstrings(
- "The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.",
- FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"),
- )
- class FlavaImageModel(FlavaPreTrainedModel):
- config_class = FlavaImageConfig
- # This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints.
- base_model_prefix = "flava.image_model"
- main_input_name = "pixel_values"
- def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True):
- super().__init__(config)
- self.config = config
- self.embeddings = FlavaImageEmbeddings(config)
- self.encoder = FlavaEncoder(config)
- self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.pooler = FlavaPooler(config) if add_pooling_layer else None
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.embeddings.patch_embeddings
- def set_input_embeddings(self, value: nn.Module):
- self.embeddings.patch_embeddings = value
- def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPooling,
- config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC,
- modality="vision",
- expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE,
- )
- def forward(
- self,
- pixel_values: Optional[torch.Tensor] = None,
- bool_masked_pos: Optional[torch.BoolTensor] = None,
- interpolate_pos_encoding: Optional[bool] = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[tuple, BaseModelOutputWithPooling]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if pixel_values is None:
- raise ValueError("You have to specify pixel_values")
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- embedding_output = self.embeddings(
- pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
- )
- encoder_outputs = self.encoder(
- embedding_output,
- attention_mask=attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- sequence_output = self.layernorm(sequence_output)
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings(
- "The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.",
- FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"),
- )
- class FlavaTextModel(FlavaPreTrainedModel):
- config_class = FlavaTextConfig
- # This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints.
- base_model_prefix = "flava.text_model"
- def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True):
- super().__init__(config)
- self.config = config
- self.embeddings = FlavaTextEmbeddings(config)
- self.encoder = FlavaEncoder(config)
- self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.pooler = FlavaPooler(config) if add_pooling_layer else None
- self.post_init()
- def get_input_embeddings(self) -> PatchEmbeddings:
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value: nn.Module):
- self.embeddings.word_embeddings = value
- def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPooling,
- config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[tuple, BaseModelOutputWithPooling]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is None:
- raise ValueError("You have to specify input_ids")
- input_shape = input_ids.size()
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=input_ids.device)
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
- attention_mask, input_shape, input_ids.device
- )
- embedding_output = self.embeddings(
- input_ids=input_ids,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- )
- encoder_outputs = self.encoder(
- embedding_output,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- sequence_output = self.layernorm(sequence_output)
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings(
- "The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.",
- FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"),
- )
- class FlavaMultimodalModel(FlavaPreTrainedModel):
- config_class = FlavaMultimodalConfig
- # This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints.
- base_model_prefix = "flava.multimodal_model"
- main_input_name = "hidden_states"
- def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True):
- super().__init__(config)
- self.config = config
- self.use_cls_token = self.config.use_cls_token
- if self.use_cls_token:
- self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
- self.encoder = FlavaEncoder(config)
- self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.pooler = FlavaPooler(config) if add_pooling_layer else None
- self.post_init()
- def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(
- FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
- )
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPooling,
- config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC,
- )
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[tuple, BaseModelOutputWithPooling]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- batch_size, seq_length, _ = hidden_states.size()
- if self.use_cls_token:
- cls_tokens = self.cls_token.expand(batch_size, -1, -1)
- hidden_states = torch.cat((cls_tokens, hidden_states), dim=1)
- seq_length += 1
- if attention_mask is None:
- attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
- attention_mask, (batch_size, seq_length), hidden_states.device
- )
- encoder_outputs = self.encoder(
- hidden_states,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- sequence_output = self.layernorm(sequence_output)
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings(
- "The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.",
- FLAVA_START_DOCSTRING.format(config="FlavaConfig"),
- )
- class FlavaModel(FlavaPreTrainedModel):
- config_class = FlavaConfig
- def __init__(self, config: FlavaConfig):
- super().__init__(config)
- if not isinstance(config.text_config, FlavaTextConfig):
- raise TypeError(
- "config.text_config is expected to be of type FlavaTextConfig but is of type"
- f" {type(config.text_config)}."
- )
- if not isinstance(config.image_config, FlavaImageConfig):
- raise TypeError(
- "config.image_config is expected to be of type FlavaImageConfig but is of type"
- f" {type(config.image_config)}."
- )
- if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
- raise TypeError(
- "config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
- + f"is of type {type(config.multimodal_config)}."
- )
- text_config = config.text_config
- image_config = config.image_config
- multimodal_config = config.multimodal_config
- self.projection_dim = config.projection_dim
- self.text_hidden_size = text_config.hidden_size
- self.image_hidden_size = image_config.hidden_size
- self.mm_hidden_size = multimodal_config.hidden_size
- self.text_model = FlavaTextModel(text_config)
- self.image_model = FlavaImageModel(image_config)
- self.multimodal_model = FlavaMultimodalModel(multimodal_config)
- self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim)
- self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim)
- self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
- self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size)
- self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
- def get_text_features(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
- applying the projection layer to the pooled output of [`FlavaTextModel`].
- Examples:
- ```python
- >>> from transformers import AutoProcessor, FlavaModel
- >>> model = FlavaModel.from_pretrained("{0}")
- >>> processor = AutoProcessor.from_pretrained("{0}")
- >>> inputs = processor(
- ... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
- ... )
- >>> text_features = model.get_text_features(**inputs)
- ```""".format(_CHECKPOINT_FOR_DOC)
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = text_outputs[0] # last_hidden_state
- text_features = self.text_projection(pooled_output)
- return text_features
- @add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
- def get_image_features(
- self,
- pixel_values: Optional[torch.Tensor] = None,
- bool_masked_pos: Optional[torch.BoolTensor] = None,
- interpolate_pos_encoding: Optional[bool] = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
- applying the projection layer to the pooled output of [`FlavaImageModel`].
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, FlavaModel
- >>> model = FlavaModel.from_pretrained("{0}")
- >>> processor = AutoProcessor.from_pretrained("{0}")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(images=image, return_tensors="pt")
- >>> image_features = model.get_image_features(**inputs)
- ```""".format(_CHECKPOINT_FOR_DOC)
- image_outputs = self.image_model(
- pixel_values=pixel_values,
- bool_masked_pos=bool_masked_pos,
- attention_mask=attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- )
- pooled_output = image_outputs[0] # last_hidden_state
- image_features = self.image_projection(pooled_output)
- return image_features
- @add_start_docstrings_to_model_forward(
- FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
- )
- @replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- pixel_values: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- bool_masked_pos: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- image_attention_mask: Optional[torch.Tensor] = None,
- skip_multimodal_encoder: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: bool = True,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, FlavaOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, FlavaModel
- >>> model = FlavaModel.from_pretrained("facebook/flava-full")
- >>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)
- >>> outputs = model(**inputs)
- >>> image_embeddings = outputs.image_embeddings
- >>> text_embeddings = outputs.text_embeddings
- >>> multimodal_embeddings = outputs.multimodal_embeddings
- >>> outputs.image_embeddings.shape
- torch.Size([1, 197, 768])
- >>> text_embeddings.shape
- torch.Size([1, 7, 768])
- >>> multimodal_embeddings.shape
- torch.Size([1, 205, 768])
- ```
- """
- return_dict = return_dict if return_dict is not None else self.config.return_dict
- if not output_hidden_states:
- raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`")
- image_embeddings = None
- image_states = None
- image_mm_projection = None
- image_output = None
- if pixel_values is not None:
- image_output = self.image_model(
- pixel_values=pixel_values,
- bool_masked_pos=bool_masked_pos,
- attention_mask=image_attention_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- image_embeddings, image_states = image_output[0], image_output[2]
- # Note that these states don't use final layernorm in the transformer model
- image_mm_projection = self.image_to_mm_projection(image_states[-1])
- text_embeddings = None
- text_states = None
- text_mm_projection = None
- text_output = None
- if input_ids is not None:
- text_output = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- token_type_ids=token_type_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- text_embeddings, text_states = text_output[0], text_output[2]
- # Note that these states don't use final layernorm in the transformer model
- text_mm_projection = self.text_to_mm_projection(text_states[-1])
- multimodal_embeddings = None
- multimodal_output = None
- if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder:
- if attention_mask is not None:
- batch_size, seq_len, _ = image_mm_projection.shape
- if self.multimodal_model.use_cls_token:
- seq_len += 1
- attention_mask_image = torch.ones(batch_size, seq_len, device=image_mm_projection.device)
- attention_multimodal = torch.cat([attention_mask_image, attention_mask], dim=1)
- else:
- attention_multimodal = None
- multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1)
- multimodal_output = self.multimodal_model(
- multimodal_input, attention_mask=attention_multimodal, return_dict=return_dict
- )
- multimodal_embeddings = multimodal_output[0]
- if not return_dict:
- return (
- image_embeddings,
- image_output,
- text_embeddings,
- text_output,
- multimodal_embeddings,
- multimodal_output,
- )
- return FlavaModelOutput(
- image_embeddings=image_embeddings,
- image_output=image_output,
- text_embeddings=text_embeddings,
- text_output=text_output,
- multimodal_embeddings=multimodal_embeddings,
- multimodal_output=multimodal_output,
- )
- class FlavaImageCodebookResPath(nn.Module):
- def __init__(self, in_size: int, out_size: int, **kwargs):
- super().__init__()
- hid_size = out_size // 4
- path = OrderedDict()
- path["relu_1"] = nn.ReLU()
- path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1)
- path["relu_2"] = nn.ReLU()
- path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
- path["relu_3"] = nn.ReLU()
- path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
- path["relu_4"] = nn.ReLU()
- path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0)
- self.path = nn.Sequential(path)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return self.path(x)
- class FlavaImageCodebookBlock(nn.Module):
- def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs):
- super().__init__()
- self.post_gain = 1 / (num_layers**2)
- if in_size != out_size:
- self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0)
- else:
- self.id_path = nn.Identity()
- self.res_path = FlavaImageCodebookResPath(in_size, out_size)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return self.id_path(x) + self.post_gain * self.res_path(x)
- class FlavaImageCodebookLayerGroup(nn.Module):
- def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True):
- super().__init__()
- blocks = OrderedDict()
- for i in range(num_blocks):
- if i == 0:
- blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
- else:
- blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
- if use_pool:
- blocks["pool"] = nn.MaxPool2d(kernel_size=2)
- self.group = nn.Sequential(blocks)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return self.group(x)
- # Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42
- @add_start_docstrings(
- """
- The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
- to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
- `get_codebook_indices` to get image tokens for an image.
- """,
- FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"),
- )
- class FlavaImageCodebook(FlavaPreTrainedModel):
- base_model_prefix = ""
- config_class = FlavaImageCodebookConfig
- main_input_name = "pixel_values"
- supports_gradient_checkpointing = False
- def __init__(
- self,
- config: FlavaImageCodebookConfig,
- **kwargs: Any,
- ):
- super().__init__(config)
- self.config = config
- self.num_groups = config.num_groups
- self.input_channels = config.input_channels
- self.num_blocks_per_group = config.num_blocks_per_group
- self.hidden_size = config.hidden_size
- self.vocab_size = config.vocab_size
- num_layers = self.num_groups * self.num_blocks_per_group
- output_blocks = OrderedDict()
- output_blocks["relu"] = nn.ReLU()
- output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0)
- blocks = OrderedDict()
- blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3)
- blocks["group_1"] = FlavaImageCodebookLayerGroup(
- self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size
- )
- blocks["group_2"] = FlavaImageCodebookLayerGroup(
- self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size
- )
- blocks["group_3"] = FlavaImageCodebookLayerGroup(
- self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size
- )
- blocks["group_4"] = FlavaImageCodebookLayerGroup(
- self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False
- )
- blocks["output"] = nn.Sequential(output_blocks)
- self.blocks = nn.Sequential(blocks)
- self.post_init()
- if self.config.freeze:
- for param in self.parameters():
- param.requires_grad = False
- def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor:
- """
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
- `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoImageProcessor, FlavaImageCodebook
- >>> model = FlavaImageCodebook.from_pretrained("{0}")
- >>> image_processor = AutoImageProcessor.from_pretrained("{0}")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
- >>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
- >>> outputs = model.get_codebook_indices(**inputs)
- ```
- """.format(_CHECKPOINT_FOR_CODEBOOK_DOC)
- z_logits = self.blocks(pixel_values)
- return torch.argmax(z_logits, axis=1)
- def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor:
- z_logits = self.blocks(pixel_values)
- return nn.Softmax(dim=1)(z_logits)
- def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
- """
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
- `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoImageProcessor, FlavaImageCodebook
- >>> model = FlavaImageCodebook.from_pretrained("{0}")
- >>> image_processor = AutoImageProcessor.from_pretrained("{0}")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
- >>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
- >>> outputs = model(**inputs)
- >>> print(outputs.shape)
- (1, 196)
- ```
- """.format(_CHECKPOINT_FOR_CODEBOOK_DOC)
- if len(pixel_values.shape) != 4:
- raise ValueError(f"input shape {pixel_values.shape} is not 4d")
- if pixel_values.shape[1] != self.input_channels:
- raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}")
- return self.blocks(pixel_values)
- class FlavaPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- if isinstance(config.hidden_act, str):
- self.transform_act_fn = ACT2FN[config.hidden_act]
- else:
- self.transform_act_fn = config.hidden_act
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
- class FlavaMaskedPredictionHead(nn.Module):
- def __init__(self, config, weight=None):
- super().__init__()
- self.config = config
- self.transform = FlavaPredictionHeadTransform(config)
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
- if weight is not None:
- self.decoder.weight = weight
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
- self.decoder.bias = self.bias
- def _tie_weights(self):
- self.decoder.bias = self.bias
- def forward(self, x):
- x = self.transform(x)
- x = self.decoder(x)
- return x
- class FlavaITMHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.pooler = FlavaPooler(config)
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
- def forward(self, x):
- x = self.pooler(x)
- x = self.seq_relationship(x)
- return x
- class FlavaGlobalContrastiveHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.global_backprop_contrastive = config.global_backprop_contrastive
- def forward(self, image_embeddings, text_embeddings, logit_scale):
- temperature = torch.exp(logit_scale)
- if not torch.distributed.is_available() or not torch.distributed.is_initialized():
- labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device)
- image_embeddings_all = [image_embeddings]
- text_embeddings_all = [text_embeddings]
- else:
- local_batch_size = image_embeddings.size(0)
- world_size = torch.distributed.get_world_size()
- if self.global_backprop_contrastive:
- # `torch.distributed.nn.functional.all_gather` does backprop on all active workers
- # whereas `torch.distributed.all_gather` does only backpropagates on the current worker.
- image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings)
- text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings)
- else:
- image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)]
- text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)]
- torch.distributed.all_gather(image_embeddings_all, image_embeddings)
- torch.distributed.all_gather(text_embeddings_all, text_embeddings)
- labels = local_batch_size * torch.distributed.get_rank() + torch.arange(
- local_batch_size, device=image_embeddings.device
- )
- image_embeddings_all = torch.cat(image_embeddings_all)
- text_embeddings_all = torch.cat(text_embeddings_all)
- logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature
- logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature
- return logits_per_image, logits_per_text, labels
- @add_start_docstrings(
- """
- The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
- """,
- FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA,
- )
- class FlavaForPreTraining(FlavaPreTrainedModel):
- # Those are linked to xxx.bias
- _tied_weights_keys = [
- "mmm_text_head.decoder.bias",
- "mmm_image_head.decoder.bias",
- "mlm_head.decoder.bias",
- "mim_head.decoder.bias",
- ]
- def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None):
- super().__init__(config)
- self.flava = FlavaModel(config)
- self.image_codebook = image_codebook
- if self.image_codebook is None and config.init_codebook:
- self.image_codebook = FlavaImageCodebook(config.image_codebook_config)
- # Levarage text and image encoder configs to create the masked
- # head since it has the right vocab
- self.mim_head = FlavaMaskedPredictionHead(config.image_config)
- self.mlm_head = FlavaMaskedPredictionHead(config.text_config)
- self.itm_head = FlavaITMHead(config)
- self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config)
- self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config)
- self.global_contrastive_head = FlavaGlobalContrastiveHead(config)
- self.image_vocab_size = config.image_config.vocab_size
- self.text_vocab_size = config.text_config.vocab_size
- self.mlm_weight = config.mlm_weight
- self.mim_weight = config.mim_weight
- self.global_contrastive_weight = config.global_contrastive_weight
- self.ce_ignore_index = config.ce_ignore_index
- self.itm_weight = config.itm_weight
- self.mmm_image_weight = config.mmm_image_weight
- self.mmm_text_weight = config.mmm_text_weight
- self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder
- self.post_init()
- def _resize_to_2d(self, x: torch.Tensor):
- if x.dim() > 2:
- x = x.view(x.size(0), -1)
- return x
- @add_start_docstrings_to_model_forward(
- FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches")
- )
- @replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- input_ids_masked: Optional[torch.LongTensor] = None,
- pixel_values: Optional[torch.FloatTensor] = None,
- codebook_pixel_values: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- bool_masked_pos: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- image_attention_mask: Optional[torch.Tensor] = None,
- skip_unmasked_multimodal_encoder: bool = None,
- mlm_labels: Optional[torch.Tensor] = None,
- mim_labels: Optional[torch.Tensor] = None,
- itm_labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: bool = True,
- return_dict: Optional[bool] = None,
- return_loss: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
- """
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import FlavaForPreTraining, AutoProcessor
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
- >>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
- >>> text = ["a photo of a cat"]
- >>> inputs = processor(
- ... images=[image],
- ... text=text,
- ... return_masks=True,
- ... return_codebook_pixels=True,
- ... padding=True,
- ... max_length=77,
- ... return_tensors="pt",
- ... )
- >>> output = model(**inputs)
- ```
- Return:
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- return_loss = return_loss if return_loss is not None else self.config.return_loss
- skip_unmasked_multimodal_encoder = (
- skip_unmasked_multimodal_encoder
- if skip_unmasked_multimodal_encoder is not None
- else self.skip_unmasked_multimodal_encoder
- )
- if input_ids_masked is None and input_ids is not None:
- logger.warning(
- "`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to"
- " `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if"
- " you are doing inference on unmasked text..."
- )
- input_ids_masked = input_ids
- flava_output = self.flava(
- input_ids=input_ids,
- pixel_values=pixel_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- image_attention_mask=image_attention_mask,
- # Don't need unmasked multimodal embedding for anything so skip it
- # NOTE: ITM uses masked version
- skip_multimodal_encoder=skip_unmasked_multimodal_encoder,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- # Pass true to have deterministic outputs
- return_dict=True,
- )
- flava_masked_output = self.flava(
- input_ids=input_ids_masked,
- pixel_values=pixel_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- image_attention_mask=image_attention_mask,
- bool_masked_pos=bool_masked_pos,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=True,
- )
- pos_mask = None
- image_embeddings = flava_output.image_embeddings
- text_embeddings = flava_output.text_embeddings
- image_masked_embeddings = flava_masked_output.image_embeddings
- text_masked_embeddings = flava_masked_output.text_embeddings
- multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings
- total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None
- mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None
- itm_logits = logits_per_image = logits_per_text = None
- # Calculate mim_labels if necessary from the image_codebook
- if image_masked_embeddings is not None or multimodal_masked_embeddings is not None:
- if mim_labels is None and return_loss:
- if self.image_codebook is None:
- raise RuntimeError(
- "`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` "
- " have been passed. Reinstantiate the model with `init_codebook` set to True or "
- "pass in your custom `mim_labels`"
- )
- if codebook_pixel_values is None:
- raise ValueError(
- "`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. "
- "Call `AutoProcessor` with `return_codebook_pixels` set to True"
- )
- mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values)
- # Unimodal MIM Loss
- # If multimodal embeddings are present, we will calculate MMM loss
- if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None:
- sequence_for_image = image_masked_embeddings
- if mim_labels is not None:
- mim_labels = self._resize_to_2d(mim_labels)
- bool_masked_pos = self._resize_to_2d(bool_masked_pos)
- mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
- sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :]
- masked_tokens = mim_labels.ne(self.ce_ignore_index)
- mim_labels_filtered = mim_labels[masked_tokens]
- sequence_for_image = sequence_for_image[masked_tokens, :]
- mim_logits = self.mim_head(sequence_for_image)
- if return_loss:
- mim_loss = nn.functional.cross_entropy(
- mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
- )
- mim_loss *= self.mim_weight
- else:
- mim_logits = self.mim_head(sequence_for_image)
- # Unimodal MLM Loss
- if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None:
- sequence_for_text = text_masked_embeddings
- if mlm_labels is not None:
- mlm_labels = self._resize_to_2d(mlm_labels)
- sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :]
- masked_tokens = mlm_labels.ne(self.ce_ignore_index)
- mlm_labels_filtered = mlm_labels[masked_tokens]
- sequence_for_text = sequence_for_text[masked_tokens, :]
- mlm_logits = self.mlm_head(sequence_for_text)
- if return_loss:
- mlm_loss = nn.functional.cross_entropy(
- mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
- )
- mlm_loss *= self.mlm_weight
- else:
- mlm_logits = self.mlm_head(sequence_for_text)
- # ITM Loss
- if self.itm_weight > 0 and multimodal_masked_embeddings is not None:
- itm_logits = self.itm_head(multimodal_masked_embeddings)
- if itm_labels is not None:
- pos_pairs = itm_labels.ne(0)
- pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True]))
- if return_loss:
- itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels)
- itm_loss *= self.itm_weight
- if multimodal_masked_embeddings is not None:
- multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask]
- if mlm_labels is not None:
- mlm_labels = mlm_labels[pos_mask]
- if mim_labels is not None:
- mim_labels = mim_labels[pos_mask]
- bool_masked_pos = bool_masked_pos[pos_mask]
- # MMM Image Loss
- if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0:
- sequence_for_image = multimodal_masked_embeddings
- end_index = image_masked_embeddings.size(1) - 1
- sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :]
- if mim_labels is not None:
- mim_labels = self._resize_to_2d(mim_labels)
- bool_masked_pos = self._resize_to_2d(bool_masked_pos)
- mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
- masked_tokens = mim_labels.ne(self.ce_ignore_index)
- mim_labels_filtered = mim_labels[masked_tokens]
- sequence_for_image = sequence_for_image[masked_tokens, :]
- mmm_image_logits = self.mmm_image_head(sequence_for_image)
- if return_loss:
- mmm_image_loss = nn.functional.cross_entropy(
- mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
- )
- mmm_image_loss *= self.mmm_image_weight
- else:
- mmm_image_logits = self.mmm_image_head(sequence_for_image)
- # MMM Text Loss
- if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0:
- sequence_for_text = multimodal_masked_embeddings
- sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :]
- if mlm_labels is not None:
- mlm_labels = self._resize_to_2d(mlm_labels)
- masked_tokens = mlm_labels.ne(self.ce_ignore_index)
- mlm_labels_filtered = mlm_labels[masked_tokens]
- sequence_for_text = sequence_for_text[masked_tokens, :]
- mmm_text_logits = self.mmm_text_head(sequence_for_text)
- if return_loss:
- mmm_text_loss = nn.functional.cross_entropy(
- mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
- )
- mmm_text_loss *= self.mmm_text_weight
- else:
- mmm_text_logits = self.mmm_text_head(sequence_for_text)
- # Global Contrastive Loss
- if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0:
- text_embedding = self.flava.text_projection(text_embeddings[:, 0, :])
- text_embedding = nn.functional.normalize(text_embedding, dim=-1)
- image_embedding = self.flava.image_projection(image_embeddings[:, 0, :])
- image_embedding = nn.functional.normalize(image_embedding, dim=-1)
- self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX)
- logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head(
- image_embedding, text_embedding, self.flava.logit_scale
- )
- # Apply ITM negative mask if any
- if pos_mask is not None:
- logits_per_image = logits_per_image[pos_mask]
- logits_per_text = logits_per_text[pos_mask]
- gc_labels = gc_labels[pos_mask]
- if return_loss:
- gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels)
- gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels)
- gc_loss = (gc_loss_image + gc_loss_text) / 2
- gc_loss *= self.global_contrastive_weight
- flava_losses = FlavaLosses(
- mim=mim_loss,
- mlm=mlm_loss,
- itm=itm_loss,
- global_contrastive=gc_loss,
- mmm_image=mmm_image_loss,
- mmm_text=mmm_text_loss,
- )
- if return_loss and not flava_losses.all_none():
- total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values())
- if not return_dict:
- output = (
- image_embeddings,
- flava_output.image_output.to_tuple() if flava_output.image_output is not None else None,
- text_embeddings,
- flava_output.text_output.to_tuple() if flava_output.text_output is not None else None,
- flava_output.multimodal_embeddings,
- flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None,
- image_masked_embeddings,
- flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None,
- text_masked_embeddings,
- flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None,
- multimodal_masked_embeddings,
- flava_masked_output.multimodal_output.to_tuple()
- if flava_masked_output.multimodal_output is not None
- else None,
- mim_logits,
- mlm_logits,
- itm_logits,
- logits_per_image,
- logits_per_image,
- mmm_image_logits,
- mmm_text_logits,
- )
- if return_loss and not flava_losses.all_none():
- output = (
- total_loss,
- flava_losses,
- ) + output
- # Filter None as transformer by default won't handle it
- return tuple(x for x in output if x is None)
- return FlavaForPreTrainingOutput(
- loss=total_loss,
- loss_info=flava_losses,
- image_embeddings=image_embeddings,
- image_output=flava_output.image_output,
- text_embeddings=text_embeddings,
- text_output=flava_output.text_output,
- multimodal_embeddings=flava_output.multimodal_embeddings,
- multimodal_output=flava_output.multimodal_output,
- image_masked_embeddings=image_masked_embeddings,
- image_masked_output=flava_masked_output.image_output,
- text_masked_embeddings=text_masked_embeddings,
- text_masked_output=flava_masked_output.text_output,
- multimodal_masked_embeddings=multimodal_masked_embeddings,
- multimodal_masked_output=flava_masked_output.multimodal_output,
- mim_logits=mim_logits,
- mlm_logits=mlm_logits,
- itm_logits=itm_logits,
- contrastive_logits_per_image=logits_per_image,
- contrastive_logits_per_text=logits_per_text,
- mmm_image_logits=mmm_image_logits,
- mmm_text_logits=mmm_text_logits,
- )
|