| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- # coding=utf-8
- # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Image/Text processor class for FLAVA
- """
- import warnings
- from typing import List, Optional, Union
- from ...image_utils import ImageInput
- from ...processing_utils import ProcessorMixin
- from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
- from ...utils import TensorType
- class FlavaProcessor(ProcessorMixin):
- r"""
- Constructs a FLAVA processor which wraps a FLAVA image processor and a FLAVA tokenizer into a single processor.
- [`FlavaProcessor`] offers all the functionalities of [`FlavaImageProcessor`] and [`BertTokenizerFast`]. See the
- [`~FlavaProcessor.__call__`] and [`~FlavaProcessor.decode`] for more information.
- Args:
- image_processor ([`FlavaImageProcessor`], *optional*): The image processor is a required input.
- tokenizer ([`BertTokenizerFast`], *optional*): The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- image_processor_class = "FlavaImageProcessor"
- tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
- def __init__(self, image_processor=None, tokenizer=None, **kwargs):
- feature_extractor = None
- if "feature_extractor" in kwargs:
- warnings.warn(
- "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
- " instead.",
- FutureWarning,
- )
- feature_extractor = kwargs.pop("feature_extractor")
- image_processor = image_processor if image_processor is not None else feature_extractor
- if image_processor is None:
- raise ValueError("You need to specify an `image_processor`.")
- if tokenizer is None:
- raise ValueError("You need to specify a `tokenizer`.")
- super().__init__(image_processor, tokenizer)
- self.current_processor = self.image_processor
- def __call__(
- self,
- images: Optional[ImageInput] = None,
- text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = False,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- return_image_mask: Optional[bool] = None,
- return_codebook_pixels: Optional[bool] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- return_tensors: Optional[Union[str, TensorType]] = None,
- **kwargs,
- ):
- """
- This method uses [`FlavaImageProcessor.__call__`] method to prepare image(s) for the model, and
- [`BertTokenizerFast.__call__`] to prepare text for the model.
- Please refer to the docstring of the above two methods for more information.
- """
- if text is None and images is None:
- raise ValueError("You have to specify either text or images. Both cannot be none.")
- if text is not None:
- encoding = self.tokenizer(
- text=text,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- return_tensors=return_tensors,
- **kwargs,
- )
- if images is not None:
- image_features = self.image_processor(
- images,
- return_image_mask=return_image_mask,
- return_codebook_pixels=return_codebook_pixels,
- return_tensors=return_tensors,
- **kwargs,
- )
- if text is not None and images is not None:
- encoding.update(image_features)
- return encoding
- elif text is not None:
- return encoding
- else:
- return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
- @property
- def feature_extractor_class(self):
- warnings.warn(
- "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
- FutureWarning,
- )
- return self.image_processor_class
- @property
- def feature_extractor(self):
- warnings.warn(
- "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
- FutureWarning,
- )
- return self.image_processor
|