__init__.py 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. # Copyright 2021 The HuggingFace Team. All rights reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import TYPE_CHECKING
  15. from ...utils import (
  16. OptionalDependencyNotAvailable,
  17. _LazyModule,
  18. is_sentencepiece_available,
  19. is_tokenizers_available,
  20. is_torch_available,
  21. )
  22. _import_structure = {"configuration_fnet": ["FNetConfig"]}
  23. try:
  24. if not is_sentencepiece_available():
  25. raise OptionalDependencyNotAvailable()
  26. except OptionalDependencyNotAvailable:
  27. pass
  28. else:
  29. _import_structure["tokenization_fnet"] = ["FNetTokenizer"]
  30. try:
  31. if not is_tokenizers_available():
  32. raise OptionalDependencyNotAvailable()
  33. except OptionalDependencyNotAvailable:
  34. pass
  35. else:
  36. _import_structure["tokenization_fnet_fast"] = ["FNetTokenizerFast"]
  37. try:
  38. if not is_torch_available():
  39. raise OptionalDependencyNotAvailable()
  40. except OptionalDependencyNotAvailable:
  41. pass
  42. else:
  43. _import_structure["modeling_fnet"] = [
  44. "FNetForMaskedLM",
  45. "FNetForMultipleChoice",
  46. "FNetForNextSentencePrediction",
  47. "FNetForPreTraining",
  48. "FNetForQuestionAnswering",
  49. "FNetForSequenceClassification",
  50. "FNetForTokenClassification",
  51. "FNetLayer",
  52. "FNetModel",
  53. "FNetPreTrainedModel",
  54. ]
  55. if TYPE_CHECKING:
  56. from .configuration_fnet import FNetConfig
  57. try:
  58. if not is_sentencepiece_available():
  59. raise OptionalDependencyNotAvailable()
  60. except OptionalDependencyNotAvailable:
  61. pass
  62. else:
  63. from .tokenization_fnet import FNetTokenizer
  64. try:
  65. if not is_tokenizers_available():
  66. raise OptionalDependencyNotAvailable()
  67. except OptionalDependencyNotAvailable:
  68. pass
  69. else:
  70. from .tokenization_fnet_fast import FNetTokenizerFast
  71. try:
  72. if not is_torch_available():
  73. raise OptionalDependencyNotAvailable()
  74. except OptionalDependencyNotAvailable:
  75. pass
  76. else:
  77. from .modeling_fnet import (
  78. FNetForMaskedLM,
  79. FNetForMultipleChoice,
  80. FNetForNextSentencePrediction,
  81. FNetForPreTraining,
  82. FNetForQuestionAnswering,
  83. FNetForSequenceClassification,
  84. FNetForTokenClassification,
  85. FNetLayer,
  86. FNetModel,
  87. FNetPreTrainedModel,
  88. )
  89. else:
  90. import sys
  91. sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)