| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright 2021 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import TYPE_CHECKING
- from ...utils import (
- OptionalDependencyNotAvailable,
- _LazyModule,
- is_sentencepiece_available,
- is_tokenizers_available,
- is_torch_available,
- )
- _import_structure = {"configuration_fnet": ["FNetConfig"]}
- try:
- if not is_sentencepiece_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["tokenization_fnet"] = ["FNetTokenizer"]
- try:
- if not is_tokenizers_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["tokenization_fnet_fast"] = ["FNetTokenizerFast"]
- try:
- if not is_torch_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["modeling_fnet"] = [
- "FNetForMaskedLM",
- "FNetForMultipleChoice",
- "FNetForNextSentencePrediction",
- "FNetForPreTraining",
- "FNetForQuestionAnswering",
- "FNetForSequenceClassification",
- "FNetForTokenClassification",
- "FNetLayer",
- "FNetModel",
- "FNetPreTrainedModel",
- ]
- if TYPE_CHECKING:
- from .configuration_fnet import FNetConfig
- try:
- if not is_sentencepiece_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .tokenization_fnet import FNetTokenizer
- try:
- if not is_tokenizers_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .tokenization_fnet_fast import FNetTokenizerFast
- try:
- if not is_torch_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .modeling_fnet import (
- FNetForMaskedLM,
- FNetForMultipleChoice,
- FNetForNextSentencePrediction,
- FNetForPreTraining,
- FNetForQuestionAnswering,
- FNetForSequenceClassification,
- FNetForTokenClassification,
- FNetLayer,
- FNetModel,
- FNetPreTrainedModel,
- )
- else:
- import sys
- sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|