| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- # coding=utf-8
- # Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization classes for FNet model."""
- import os
- from shutil import copyfile
- from typing import List, Optional, Tuple
- from ...tokenization_utils import AddedToken
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import is_sentencepiece_available, logging
- if is_sentencepiece_available():
- from .tokenization_fnet import FNetTokenizer
- else:
- FNetTokenizer = None
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
- SPIECE_UNDERLINE = "▁"
- class FNetTokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a "fast" FNetTokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
- [`AlbertTokenizerFast`]. Based on
- [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
- tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods
- Args:
- vocab_file (`str`):
- [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
- contains the vocabulary necessary to instantiate a tokenizer.
- do_lower_case (`bool`, *optional*, defaults to `False`):
- Whether or not to lowercase the input when tokenizing.
- remove_space (`bool`, *optional*, defaults to `True`):
- Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
- keep_accents (`bool`, *optional*, defaults to `True`):
- Whether or not to keep accents when tokenizing.
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- sep_token (`str`, *optional*, defaults to `"[SEP]"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- pad_token (`str`, *optional*, defaults to `"<pad>"`):
- The token used for padding, for example when batching sequences of different lengths.
- cls_token (`str`, *optional*, defaults to `"[CLS]"`):
- The classifier token which is used when doing sequence classification (classification of the whole sequence
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
- mask_token (`str`, *optional*, defaults to `"[MASK]"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "token_type_ids"]
- slow_tokenizer_class = FNetTokenizer
- def __init__(
- self,
- vocab_file=None,
- tokenizer_file=None,
- do_lower_case=False,
- remove_space=True,
- keep_accents=True,
- unk_token="<unk>",
- sep_token="[SEP]",
- pad_token="<pad>",
- cls_token="[CLS]",
- mask_token="[MASK]",
- **kwargs,
- ):
- # Mask token behave like a normal word, i.e. include the space before it and
- # is included in the raw text, there should be a match in a non-normalized sentence.
- mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
- cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
- sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
- super().__init__(
- vocab_file,
- tokenizer_file=tokenizer_file,
- do_lower_case=do_lower_case,
- remove_space=remove_space,
- keep_accents=keep_accents,
- unk_token=unk_token,
- sep_token=sep_token,
- pad_token=pad_token,
- cls_token=cls_token,
- mask_token=mask_token,
- **kwargs,
- )
- self.do_lower_case = do_lower_case
- self.remove_space = remove_space
- self.keep_accents = keep_accents
- self.vocab_file = vocab_file
- @property
- def can_save_slow_tokenizer(self) -> bool:
- return os.path.isfile(self.vocab_file) if self.vocab_file else False
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. An FNet sequence has the following format:
- - single sequence: `[CLS] X [SEP]`
- - pair of sequences: `[CLS] A [SEP] B [SEP]`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return cls + token_ids_0 + sep
- return cls + token_ids_0 + sep + token_ids_1 + sep
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet
- sequence pair mask has the following format:
- ```
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- ```
- if token_ids_1 is None, only returns the first portion of the mask (0s).
- Args:
- token_ids_0 (`List[int]`):
- List of ids.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- out_vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
- copyfile(self.vocab_file, out_vocab_file)
- return (out_vocab_file,)
|