| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import TYPE_CHECKING
- from ...utils import (
- OptionalDependencyNotAvailable,
- _LazyModule,
- is_flax_available,
- is_sentencepiece_available,
- is_tokenizers_available,
- is_torch_available,
- )
- _import_structure = {
- "configuration_gemma": ["GemmaConfig"],
- }
- try:
- if not is_sentencepiece_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["tokenization_gemma"] = ["GemmaTokenizer"]
- try:
- if not is_tokenizers_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["tokenization_gemma_fast"] = ["GemmaTokenizerFast"]
- try:
- if not is_torch_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["modeling_gemma"] = [
- "GemmaForCausalLM",
- "GemmaModel",
- "GemmaPreTrainedModel",
- "GemmaForSequenceClassification",
- "GemmaForTokenClassification",
- ]
- try:
- if not is_flax_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["modeling_flax_gemma"] = [
- "FlaxGemmaForCausalLM",
- "FlaxGemmaModel",
- "FlaxGemmaPreTrainedModel",
- ]
- if TYPE_CHECKING:
- from .configuration_gemma import GemmaConfig
- try:
- if not is_sentencepiece_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .tokenization_gemma import GemmaTokenizer
- try:
- if not is_tokenizers_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .tokenization_gemma_fast import GemmaTokenizerFast
- try:
- if not is_torch_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .modeling_gemma import (
- GemmaForCausalLM,
- GemmaForSequenceClassification,
- GemmaForTokenClassification,
- GemmaModel,
- GemmaPreTrainedModel,
- )
- try:
- if not is_flax_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .modeling_flax_gemma import (
- FlaxGemmaForCausalLM,
- FlaxGemmaModel,
- FlaxGemmaPreTrainedModel,
- )
- else:
- import sys
- sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|