| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043 |
- # coding=utf-8
- # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
- #
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
- import sentencepiece as spm
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from ...activations import ACT2FN
- from ...cache_utils import Cache, DynamicCache, StaticCache
- from ...configuration_utils import PretrainedConfig
- from ...modeling_flash_attention_utils import _flash_attention_forward
- from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
- from ...pytorch_utils import ALL_LAYERNORM_LAYERS
- from ...tokenization_utils import AddedToken, PreTrainedTokenizer
- from ...utils import logging
- from ..llama.modeling_llama import (
- LlamaDecoderLayer,
- LlamaFlashAttention2,
- LlamaForCausalLM,
- LlamaForSequenceClassification,
- LlamaForTokenClassification,
- LlamaModel,
- apply_rotary_pos_emb,
- repeat_kv,
- )
- from ..llama.tokenization_llama import LlamaTokenizer
- if TYPE_CHECKING:
- from ...tokenization_utils_base import TextInput
- VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
- SPIECE_UNDERLINE = "▁"
- _CHECKPOINT_FOR_DOC = "google/gemma-7b"
- logger = logging.get_logger(__name__)
- class GemmaConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the Gemma-7B.
- e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 256000):
- Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`GemmaModel`]
- hidden_size (`int`, *optional*, defaults to 3072):
- Dimension of the hidden representations.
- intermediate_size (`int`, *optional*, defaults to 24576):
- Dimension of the MLP representations.
- num_hidden_layers (`int`, *optional*, defaults to 28):
- Number of hidden layers in the Transformer decoder.
- num_attention_heads (`int`, *optional*, defaults to 16):
- Number of attention heads for each attention layer in the Transformer decoder.
- num_key_value_heads (`int`, *optional*, defaults to 16):
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
- by meanpooling all the original heads within that group. For more details checkout [this
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
- `num_attention_heads`.
- head_dim (`int`, *optional*, defaults to 256):
- The attention head dimension.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
- The legacy activation function. It is overwritten by the `hidden_activation`.
- hidden_activation (`str` or `function`, *optional*):
- The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
- if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
- max_position_embeddings (`int`, *optional*, defaults to 8192):
- The maximum sequence length that this model might ever be used with.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the rms normalization layers.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if `config.is_decoder=True`.
- pad_token_id (`int`, *optional*, defaults to 0):
- Padding token id.
- eos_token_id (`int`, *optional*, defaults to 1):
- End of stream token id.
- bos_token_id (`int`, *optional*, defaults to 2):
- Beginning of stream token id.
- tie_word_embeddings (`bool`, *optional*, defaults to `True`):
- Whether to tie weight embeddings
- rope_theta (`float`, *optional*, defaults to 10000.0):
- The base period of the RoPE embeddings.
- attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- ```python
- >>> from transformers import GemmaModel, GemmaConfig
- >>> # Initializing a Gemma gemma-7b style configuration
- >>> configuration = GemmaConfig()
- >>> # Initializing a model from the gemma-7b style configuration
- >>> model = GemmaModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "gemma"
- keys_to_ignore_at_inference = ["past_key_values"]
- def __init__(
- self,
- vocab_size=256000,
- hidden_size=3072,
- intermediate_size=24576,
- num_hidden_layers=28,
- num_attention_heads=16,
- num_key_value_heads=16,
- head_dim=256,
- hidden_act="gelu_pytorch_tanh",
- hidden_activation=None,
- max_position_embeddings=8192,
- initializer_range=0.02,
- rms_norm_eps=1e-6,
- use_cache=True,
- pad_token_id=0,
- eos_token_id=1,
- bos_token_id=2,
- tie_word_embeddings=True,
- rope_theta=10000.0,
- attention_bias=False,
- attention_dropout=0.0,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.max_position_embeddings = max_position_embeddings
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.head_dim = head_dim
- self.num_key_value_heads = num_key_value_heads
- self.hidden_act = hidden_act
- self.hidden_activation = hidden_activation
- self.initializer_range = initializer_range
- self.rms_norm_eps = rms_norm_eps
- self.use_cache = use_cache
- self.rope_theta = rope_theta
- self.attention_bias = attention_bias
- self.attention_dropout = attention_dropout
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- tie_word_embeddings=tie_word_embeddings,
- **kwargs,
- )
- class GemmaTokenizer(LlamaTokenizer, PreTrainedTokenizer):
- """
- Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
- no padding token in the original model.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
- eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
- The end of sequence token.
- pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`):
- A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
- attention mechanisms or loss computation.
- sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
- Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
- SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
- to set:
- - `enable_sampling`: Enable subword regularization.
- - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- - `nbest_size = {0,1}`: No sampling is performed.
- - `nbest_size > 1`: samples from the nbest_size results.
- - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
- using forward-filtering-and-backward-sampling algorithm.
- - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
- BPE-dropout.
- add_bos_token (`bool`, *optional*, defaults to `True`):
- Whether or not to add an `bos_token` at the start of sequences.
- add_eos_token (`bool`, *optional*, defaults to `False`):
- Whether or not to add an `eos_token` at the end of sequences.
- clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
- Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
- extra spaces.
- use_default_system_prompt (`bool`, *optional*, defaults to `False`):
- Whether or not the default system prompt for Gemma should be used.
- spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not to add spaces between special tokens.
- """
- def __init__(
- self,
- vocab_file,
- unk_token="<unk>",
- bos_token="<bos>",
- eos_token="<eos>",
- pad_token="<pad>",
- sp_model_kwargs: Optional[Dict[str, Any]] = None,
- add_bos_token=True,
- add_eos_token=False,
- clean_up_tokenization_spaces=False,
- use_default_system_prompt=False,
- spaces_between_special_tokens=False,
- **kwargs,
- ):
- self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
- bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
- eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
- unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
- pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
- self.vocab_file = vocab_file
- self.add_bos_token = add_bos_token
- self.add_eos_token = add_eos_token
- self.use_default_system_prompt = use_default_system_prompt
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
- self.sp_model.Load(vocab_file)
- PreTrainedTokenizer.__init__(
- self,
- bos_token=bos_token,
- eos_token=eos_token,
- unk_token=unk_token,
- pad_token=pad_token,
- add_bos_token=add_bos_token,
- add_eos_token=add_eos_token,
- sp_model_kwargs=sp_model_kwargs,
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
- use_default_system_prompt=use_default_system_prompt,
- spaces_between_special_tokens=spaces_between_special_tokens,
- **kwargs,
- )
- def get_spm_processor(self):
- raise AttributeError("Not needed for Gemma")
- def unk_token_length(self):
- raise AttributeError("Not needed for Gemma")
- def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
- """
- Args:
- text: TextInput
- Simply calls PreTrainedTokenizer's method
- """
- return PreTrainedTokenizer.tokenize(self, text, **kwargs)
- def _tokenize(self, text, **kwargs):
- """
- Args:
- text: TextInput
- Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
- """
- return self.sp_model.encode(text, out_type=str)
- def _decode(
- self,
- token_ids: List[int],
- skip_special_tokens: bool = False,
- spaces_between_special_tokens: bool = False,
- **kwargs,
- ) -> str:
- sub_texts = []
- current_sub_text = []
- for ids in token_ids:
- if skip_special_tokens and ids in self.all_special_ids:
- continue
- if ids in self._added_tokens_decoder:
- if current_sub_text:
- sub_texts.append(self.sp_model.decode(current_sub_text))
- sub_texts.append(self._added_tokens_decoder[ids].content)
- current_sub_text = []
- else:
- current_sub_text.append(ids)
- if current_sub_text:
- sub_texts.append(self.sp_model.decode(current_sub_text))
- if spaces_between_special_tokens:
- sub_texts = " ".join(sub_texts)
- else:
- sub_texts = "".join(sub_texts)
- return sub_texts.replace(SPIECE_UNDERLINE, " ")
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- current_sub_tokens = []
- out_string = ""
- for token in tokens:
- # make sure that special tokens are not decoded using sentencepiece model
- if token in self._added_tokens_encoder:
- out_string += self.sp_model.decode(current_sub_tokens) + token
- current_sub_tokens = []
- else:
- current_sub_tokens.append(token)
- out_string += self.sp_model.decode(current_sub_tokens)
- return out_string
- class GemmaRMSNorm(nn.Module):
- def __init__(self, dim: int, eps: float = 1e-6):
- super().__init__()
- self.eps = eps
- self.weight = nn.Parameter(torch.zeros(dim))
- def _norm(self, x):
- return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
- def forward(self, x):
- output = self._norm(x.float())
- # Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
- # See https://github.com/huggingface/transformers/pull/29402
- output = output * (1.0 + self.weight.float())
- return output.type_as(x)
- def extra_repr(self):
- return f"{tuple(self.weight.shape)}, eps={self.eps}"
- ALL_LAYERNORM_LAYERS.append(GemmaRMSNorm)
- class GemmaRotaryEmbedding(nn.Module):
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
- super().__init__()
- self.dim = dim
- self.max_position_embeddings = max_position_embeddings
- self.base = base
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
- self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
- @torch.no_grad()
- def forward(self, x, position_ids, seq_len=None):
- # x: [bs, num_attention_heads, seq_len, head_size]
- self.inv_freq.to(x.device)
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
- position_ids_expanded = position_ids[:, None, :].float()
- # Force float32 since bfloat16 loses precision on long contexts
- # See https://github.com/huggingface/transformers/pull/29285
- device_type = x.device.type
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
- with torch.autocast(device_type=device_type, enabled=False):
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
- emb = torch.cat((freqs, freqs), dim=-1)
- cos = emb.cos()
- sin = emb.sin()
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
- class GemmaLinearScalingRotaryEmbedding(GemmaRotaryEmbedding):
- """GemmaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
- def forward(self, x, position_ids):
- # difference to the original RoPE: a scaling factor is aplied to the position ids
- position_ids = position_ids.float() / self.scaling_factor
- cos, sin = super().forward(x, position_ids)
- return cos, sin
- class GemmaDynamicNTKScalingRotaryEmbedding(GemmaRotaryEmbedding):
- """GemmaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
- def forward(self, x, position_ids):
- # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
- seq_len = torch.max(position_ids) + 1
- if seq_len > self.max_position_embeddings:
- base = self.base * (
- (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
- ) ** (self.dim / (self.dim - 2))
- inv_freq = 1.0 / (
- base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
- )
- self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
- cos, sin = super().forward(x, position_ids)
- return cos, sin
- class GemmaMLP(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.hidden_size = config.hidden_size
- self.intermediate_size = config.intermediate_size
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
- if config.hidden_activation is None:
- logger.warning_once(
- "`config.hidden_act` is ignored, you should use `config.hidden_activation` instead.\n"
- "Gemma's activation function will be set to `gelu_pytorch_tanh`. Please, use\n"
- "`config.hidden_activation` if you want to override this behaviour.\n"
- "See https://github.com/huggingface/transformers/pull/29402 for more details."
- )
- config.hidden_activation = "gelu_pytorch_tanh"
- hidden_activation = config.hidden_activation
- self.act_fn = ACT2FN[hidden_activation]
- def forward(self, x):
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
- class GemmaAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(self, config: GemmaConfig, layer_idx: Optional[int] = None):
- super().__init__()
- self.config = config
- self.layer_idx = layer_idx
- if layer_idx is None:
- logger.warning_once(
- f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
- "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
- "when creating this class."
- )
- self.attention_dropout = config.attention_dropout
- self.hidden_size = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = config.head_dim
- self.num_key_value_heads = config.num_key_value_heads
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
- self.max_position_embeddings = config.max_position_embeddings
- self.rope_theta = config.rope_theta
- self.is_causal = True
- self.scaling = 1 / math.sqrt(config.head_dim)
- if self.hidden_size % self.num_heads != 0:
- raise ValueError(
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
- f" and `num_heads`: {self.num_heads})."
- )
- self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
- self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
- self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
- self.rotary_emb = GemmaRotaryEmbedding(
- self.head_dim,
- max_position_embeddings=self.max_position_embeddings,
- base=self.rope_theta,
- )
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states)
- key_states = self.k_proj(hidden_states)
- value_states = self.v_proj(hidden_states)
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- cos, sin = self.rotary_emb(value_states, position_ids)
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
- if past_key_value is not None:
- # sin and cos are specific to RoPE models; cache_position needed for the static cache
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
- key_states = repeat_kv(key_states, self.num_key_value_groups)
- value_states = repeat_kv(value_states, self.num_key_value_groups)
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
- if attention_mask is not None: # no matter the length, we just slice it
- causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
- attn_weights = attn_weights + causal_mask
- # upcast attention to fp32
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
- attn_output = torch.matmul(attn_weights, value_states)
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.view(bsz, q_len, -1)
- attn_output = self.o_proj(attn_output)
- if not output_attentions:
- attn_weights = None
- return attn_output, attn_weights, past_key_value
- class GemmaSdpaAttention(GemmaAttention):
- """
- Gemma attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
- `GemmaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
- SDPA API.
- """
- # Adapted from GemmaAttention.forward
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- **kwargs,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- if output_attentions:
- # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
- logger.warning_once(
- "GemmaModel is using GemmaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
- )
- return super().forward(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- cache_position=cache_position,
- )
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states)
- key_states = self.k_proj(hidden_states)
- value_states = self.v_proj(hidden_states)
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- cos, sin = self.rotary_emb(value_states, position_ids)
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
- if past_key_value is not None:
- # sin and cos are specific to RoPE models; cache_position needed for the static cache
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
- key_states = repeat_kv(key_states, self.num_key_value_groups)
- value_states = repeat_kv(value_states, self.num_key_value_groups)
- causal_mask = attention_mask
- if attention_mask is not None:
- causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
- if query_states.device.type == "cuda" and causal_mask is not None:
- query_states = query_states.contiguous()
- key_states = key_states.contiguous()
- value_states = value_states.contiguous()
- # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
- # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
- is_causal = True if causal_mask is None and q_len > 1 else False
- attn_output = torch.nn.functional.scaled_dot_product_attention(
- query_states,
- key_states,
- value_states,
- attn_mask=causal_mask,
- dropout_p=self.attention_dropout if self.training else 0.0,
- is_causal=is_causal,
- )
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.view(bsz, q_len, -1)
- attn_output = self.o_proj(attn_output)
- return attn_output, None, past_key_value
- class GemmaFlashAttention2(LlamaFlashAttention2, GemmaAttention):
- """
- Gemma flash attention module. This module inherits from `GemmaAttention` as the weights of the module stays
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
- flash attention and deal with padding tokens in case the input contains any of them.
- """
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- if isinstance(past_key_value, StaticCache):
- raise ValueError(
- "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
- "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
- )
- output_attentions = False
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states)
- key_states = self.k_proj(hidden_states)
- value_states = self.v_proj(hidden_states)
- # Flash attention requires the input to have the shape
- # batch_size x seq_length x head_dim x hidden_dim
- # therefore we just need to keep the original shape
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- cos, sin = self.rotary_emb(value_states, position_ids)
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
- if past_key_value is not None:
- # sin and cos are specific to RoPE models; cache_position needed for the static cache
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
- # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
- # to be able to avoid many of these transpose/reshape/view.
- query_states = query_states.transpose(1, 2)
- key_states = key_states.transpose(1, 2)
- value_states = value_states.transpose(1, 2)
- dropout_rate = self.attention_dropout if self.training else 0.0
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
- # therefore the input hidden states gets silently casted in float32. Hence, we need
- # cast them back in the correct dtype just to be sure everything works as expected.
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
- # in fp32. (GemmaRMSNorm handles it correctly)
- input_dtype = query_states.dtype
- if input_dtype == torch.float32:
- if torch.is_autocast_enabled():
- target_dtype = torch.get_autocast_gpu_dtype()
- # Handle the case where the model is quantized
- elif hasattr(self.config, "_pre_quantization_dtype"):
- target_dtype = self.config._pre_quantization_dtype
- else:
- target_dtype = self.q_proj.weight.dtype
- logger.warning_once(
- f"The input hidden states seems to be silently casted in float32, this might be related to"
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
- f" {target_dtype}."
- )
- query_states = query_states.to(target_dtype)
- key_states = key_states.to(target_dtype)
- value_states = value_states.to(target_dtype)
- attn_output = _flash_attention_forward(
- query_states,
- key_states,
- value_states,
- attention_mask,
- q_len,
- position_ids=position_ids,
- dropout=dropout_rate,
- sliding_window=getattr(self, "sliding_window", None),
- is_causal=self.is_causal,
- use_top_left_mask=self._flash_attn_uses_top_left_mask,
- )
- attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
- attn_output = self.o_proj(attn_output)
- if not output_attentions:
- attn_weights = None
- return attn_output, attn_weights, past_key_value
- GEMMA_ATTENTION_CLASSES = {
- "eager": GemmaAttention,
- "flash_attention_2": GemmaFlashAttention2,
- "sdpa": GemmaSdpaAttention,
- }
- class GemmaDecoderLayer(LlamaDecoderLayer):
- def __init__(self, config: GemmaConfig, layer_idx: int):
- super().__init__(config)
- self.self_attn = GEMMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
- self.mlp = GemmaMLP(config)
- self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: Optional[bool] = False,
- use_cache: Optional[bool] = False,
- cache_position: Optional[torch.LongTensor] = None,
- **kwargs,
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`, *optional*):
- attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
- query_sequence_length, key_sequence_length)` if default attention is used.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
- (see `past_key_values`).
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
- Indices depicting the position of the input sequence tokens in the sequence
- kwargs (`dict`, *optional*):
- Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
- into the model
- """
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- # Self Attention
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- cache_position=cache_position,
- **kwargs,
- )
- hidden_states = residual + hidden_states
- # Fully Connected
- residual = hidden_states
- hidden_states = self.post_attention_layernorm(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = residual + hidden_states
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (self_attn_weights,)
- if use_cache:
- outputs += (present_key_value,)
- return outputs
- class GemmaModel(LlamaModel):
- def __init__(self, config: GemmaConfig):
- super().__init__(config)
- self.layers = nn.ModuleList(
- [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
- )
- self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- del self.rotary_emb # Gemma does not implement rotary emb at the modeling level yet!
- self.post_init()
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple, BaseModelOutputWithPast]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if (input_ids is None) ^ (inputs_embeds is not None):
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
- if self.gradient_checkpointing and self.training and use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
- )
- use_cache = False
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input_ids)
- # kept for BC (non `Cache` `past_key_values` inputs)
- return_legacy_cache = False # noqa: F841
- if use_cache and not isinstance(past_key_values, Cache):
- return_legacy_cache = True # noqa: F841
- if past_key_values is None:
- past_key_values = DynamicCache()
- else:
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
- logger.warning_once(
- "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
- "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
- "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
- )
- if cache_position is None:
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
- cache_position = torch.arange(
- past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
- )
- if position_ids is None:
- position_ids = cache_position.unsqueeze(0)
- causal_mask = self._update_causal_mask(
- attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
- )
- # embed positions
- hidden_states = inputs_embeds
- # normalized
- # Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
- # See https://github.com/huggingface/transformers/pull/29402
- normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
- hidden_states = hidden_states * normalizer
- # decoder layers
- all_hidden_states = () if output_hidden_states else None
- all_self_attns = () if output_attentions else None
- next_decoder_cache = None
- for decoder_layer in self.layers:
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- decoder_layer.__call__,
- hidden_states,
- causal_mask,
- position_ids,
- past_key_values,
- output_attentions,
- use_cache,
- cache_position,
- )
- else:
- layer_outputs = decoder_layer(
- hidden_states,
- attention_mask=causal_mask,
- position_ids=position_ids,
- past_key_value=past_key_values,
- output_attentions=output_attentions,
- use_cache=use_cache,
- cache_position=cache_position,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
- if output_attentions:
- all_self_attns += (layer_outputs[1],)
- hidden_states = self.norm(hidden_states)
- # add hidden states from the last decoder layer
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- next_cache = next_decoder_cache if use_cache else None
- if return_legacy_cache:
- next_cache = next_cache.to_legacy_cache()
- if not return_dict:
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
- return BaseModelOutputWithPast(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- )
- # Example where we ony modify the docstring and call super
- class GemmaForCausalLM(LlamaForCausalLM):
- def __init__(self, config):
- super().__init__(config)
- self.model = GemmaModel(config)
- self.post_init()
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- num_logits_to_keep: int = 0,
- **loss_kwargs,
- ) -> Union[Tuple, CausalLMOutputWithPast]:
- r"""
- ```python
- >>> from transformers import AutoTokenizer, GemmaForCausalLM
- >>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
- >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
- >>> prompt = "What is your favorite condiment?"
- >>> inputs = tokenizer(prompt, return_tensors="pt")
- >>> # Generate
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
- "What is your favorite condiment?"
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
- outputs = self.model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- cache_position=cache_position,
- )
- hidden_states = outputs[0]
- # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
- logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
- loss = None
- if labels is not None:
- loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
- if not return_dict:
- output = (logits,) + outputs[1:]
- return (loss,) + output if loss is not None else output
- return CausalLMOutputWithPast(
- loss=loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- class GemmaForSequenceClassification(LlamaForSequenceClassification):
- def __init__(self, config):
- super().__init__(config)
- self.model = GemmaModel(config)
- self.post_init()
- class GemmaForTokenClassification(LlamaForTokenClassification):
- def __init__(self, config):
- super().__init__(config)
- self.model = GemmaModel(config)
- self.post_init()
- __all__ = [
- "GemmaConfig",
- "GemmaTokenizer",
- "GemmaModel",
- "GemmaForCausalLM",
- "GemmaForSequenceClassification",
- "GemmaForTokenClassification",
- ]
|