| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
- # This file was automatically generated from src/transformers/models/gemma/modular_gemma.py.
- # Do NOT edit this file manually as any edits will be overwritten by the generation of
- # the file from the modular. If any change should be done, please apply the change to the
- # modular_gemma.py file directly. One of our CI enforces this.
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
- # coding=utf-8
- # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
- #
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from shutil import copyfile
- from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
- import sentencepiece as spm
- from ...tokenization_utils import AddedToken, PreTrainedTokenizer
- from ...utils import logging
- if TYPE_CHECKING:
- from ...tokenization_utils_base import TextInput
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
- SPIECE_UNDERLINE = "▁"
- class GemmaTokenizer(PreTrainedTokenizer):
- """
- Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
- no padding token in the original model.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
- eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
- The end of sequence token.
- pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`):
- A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
- attention mechanisms or loss computation.
- sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
- Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
- SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
- to set:
- - `enable_sampling`: Enable subword regularization.
- - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- - `nbest_size = {0,1}`: No sampling is performed.
- - `nbest_size > 1`: samples from the nbest_size results.
- - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
- using forward-filtering-and-backward-sampling algorithm.
- - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
- BPE-dropout.
- add_bos_token (`bool`, *optional*, defaults to `True`):
- Whether or not to add an `bos_token` at the start of sequences.
- add_eos_token (`bool`, *optional*, defaults to `False`):
- Whether or not to add an `eos_token` at the end of sequences.
- clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
- Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
- extra spaces.
- use_default_system_prompt (`bool`, *optional*, defaults to `False`):
- Whether or not the default system prompt for Gemma should be used.
- spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not to add spaces between special tokens.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- def __init__(
- self,
- vocab_file,
- unk_token="<unk>",
- bos_token="<bos>",
- eos_token="<eos>",
- pad_token="<pad>",
- sp_model_kwargs: Optional[Dict[str, Any]] = None,
- add_bos_token=True,
- add_eos_token=False,
- clean_up_tokenization_spaces=False,
- use_default_system_prompt=False,
- spaces_between_special_tokens=False,
- **kwargs,
- ):
- self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
- bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
- eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
- unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
- pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
- self.vocab_file = vocab_file
- self.add_bos_token = add_bos_token
- self.add_eos_token = add_eos_token
- self.use_default_system_prompt = use_default_system_prompt
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
- self.sp_model.Load(vocab_file)
- super().__init__(
- bos_token=bos_token,
- eos_token=eos_token,
- unk_token=unk_token,
- pad_token=pad_token,
- add_bos_token=add_bos_token,
- add_eos_token=add_eos_token,
- sp_model_kwargs=sp_model_kwargs,
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
- use_default_system_prompt=use_default_system_prompt,
- spaces_between_special_tokens=spaces_between_special_tokens,
- **kwargs,
- )
- def __getstate__(self):
- state = self.__dict__.copy()
- state["sp_model"] = None
- state["sp_model_proto"] = self.sp_model.serialized_model_proto()
- return state
- def __setstate__(self, d):
- self.__dict__ = d
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
- self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
- @property
- def vocab_size(self):
- """Returns vocab size"""
- return self.sp_model.get_piece_size()
- def get_vocab(self):
- """Returns vocab as a dict"""
- vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
- vocab.update(self.added_tokens_encoder)
- return vocab
- def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
- """
- Args:
- text: TextInput
- Simply calls PreTrainedTokenizer's method
- """
- return super().tokenize(text, **kwargs)
- def _tokenize(self, text, **kwargs):
- """
- Args:
- text: TextInput
- Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
- """
- return self.sp_model.encode(text, out_type=str)
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.sp_model.piece_to_id(token)
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- token = self.sp_model.IdToPiece(index)
- return token
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- current_sub_tokens = []
- out_string = ""
- for token in tokens:
- # make sure that special tokens are not decoded using sentencepiece model
- if token in self._added_tokens_encoder:
- out_string += self.sp_model.decode(current_sub_tokens) + token
- current_sub_tokens = []
- else:
- current_sub_tokens.append(token)
- out_string += self.sp_model.decode(current_sub_tokens)
- return out_string
- def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
- """
- Save the vocabulary and special tokens file to a directory.
- Args:
- save_directory (`str`):
- The directory in which to save the vocabulary.
- Returns:
- `Tuple(str)`: Paths to the files saved.
- """
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- out_vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
- copyfile(self.vocab_file, out_vocab_file)
- elif not os.path.isfile(self.vocab_file):
- with open(out_vocab_file, "wb") as fi:
- content_spiece_model = self.sp_model.serialized_model_proto()
- fi.write(content_spiece_model)
- return (out_vocab_file,)
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
- output = bos_token_id + token_ids_0 + eos_token_id
- if token_ids_1 is not None:
- output = output + bos_token_id + token_ids_1 + eos_token_id
- return output
- def get_special_tokens_mask(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- bos_token_id = [1] if self.add_bos_token else []
- eos_token_id = [1] if self.add_eos_token else []
- if token_ids_1 is None:
- return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
- return (
- bos_token_id
- + ([0] * len(token_ids_0))
- + eos_token_id
- + bos_token_id
- + ([0] * len(token_ids_1))
- + eos_token_id
- )
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
- sequence pair mask has the following format:
- ```
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- ```
- if token_ids_1 is None, only returns the first portion of the mask (0s).
- Args:
- token_ids_0 (`List[int]`):
- List of ids.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
- """
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
- output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
- if token_ids_1 is not None:
- output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
- return output
- def _decode(
- self,
- token_ids: List[int],
- skip_special_tokens: bool = False,
- spaces_between_special_tokens: bool = False,
- **kwargs,
- ) -> str:
- sub_texts = []
- current_sub_text = []
- for ids in token_ids:
- if skip_special_tokens and ids in self.all_special_ids:
- continue
- if ids in self._added_tokens_decoder:
- if current_sub_text:
- sub_texts.append(self.sp_model.decode(current_sub_text))
- sub_texts.append(self._added_tokens_decoder[ids].content)
- current_sub_text = []
- else:
- current_sub_text.append(ids)
- if current_sub_text:
- sub_texts.append(self.sp_model.decode(current_sub_text))
- if spaces_between_special_tokens:
- sub_texts = " ".join(sub_texts)
- else:
- sub_texts = "".join(sub_texts)
- return sub_texts.replace(SPIECE_UNDERLINE, " ")
- __all__ = ["GemmaTokenizer"]
|