| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- # coding=utf-8
- # Copyright 2024 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from shutil import copyfile
- from typing import Optional, Tuple
- from tokenizers import processors
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import is_sentencepiece_available, logging
- from ...utils.versions import require_version
- require_version("tokenizers>=0.13.3")
- if is_sentencepiece_available():
- from .tokenization_gemma import GemmaTokenizer
- else:
- GemmaTokenizer = None
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
- class GemmaTokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a Gemma tokenizer fast. Based on byte-level Byte-Pair-Encoding.
- This uses notably ByteFallback and no prefix space. Normalization is applied to replace `" "` with `"▁"`
- ```python
- >>> from transformers import GemmaTokenizerFast
- >>> tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
- >>> tokenizer.encode("Hello this is a test")
- [2, 4521, 736, 603, 476, 2121]
- ```
- If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
- call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
- values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
- [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`, *optional*):
- [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
- contains the vocabulary necessary to instantiate a tokenizer.
- tokenizer_file (`str`, *optional*):
- [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
- contains everything needed to load the tokenizer.
- clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
- Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
- extra spaces.
- unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
- eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
- The end of sequence token.
- pad_token (`str`, *optional*, defaults to `"<pad>"`):
- The padding token
- add_bos_token (`bool`, *optional*, defaults to `True`):
- Whether or not to add an `bos_token` at the start of sequences.
- add_eos_token (`bool`, *optional*, defaults to `False`):
- Whether or not to add an `eos_token` at the end of sequences.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- slow_tokenizer_class = GemmaTokenizer
- padding_side = "left"
- model_input_names = ["input_ids", "attention_mask"]
- def __init__(
- self,
- vocab_file=None,
- tokenizer_file=None,
- clean_up_tokenization_spaces=False,
- unk_token="<unk>",
- bos_token="<bos>",
- eos_token="<eos>",
- pad_token="<pad>",
- add_bos_token=True,
- add_eos_token=False,
- **kwargs,
- ):
- super().__init__(
- vocab_file=vocab_file,
- tokenizer_file=tokenizer_file,
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
- unk_token=unk_token,
- bos_token=bos_token,
- eos_token=eos_token,
- pad_token=pad_token,
- add_bos_token=add_bos_token,
- add_eos_token=add_eos_token,
- **kwargs,
- )
- self._add_bos_token = add_bos_token
- self._add_eos_token = add_eos_token
- self.update_post_processor()
- self.vocab_file = vocab_file
- @property
- def can_save_slow_tokenizer(self) -> bool:
- return os.path.isfile(self.vocab_file) if self.vocab_file else False
- # Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
- def update_post_processor(self):
- """
- Updates the underlying post processor with the current `bos_token` and `eos_token`.
- """
- bos = self.bos_token
- bos_token_id = self.bos_token_id
- if bos is None and self.add_bos_token:
- raise ValueError("add_bos_token = True but bos_token = None")
- eos = self.eos_token
- eos_token_id = self.eos_token_id
- if eos is None and self.add_eos_token:
- raise ValueError("add_eos_token = True but eos_token = None")
- single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
- pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
- special_tokens = []
- if self.add_bos_token:
- special_tokens.append((bos, bos_token_id))
- if self.add_eos_token:
- special_tokens.append((eos, eos_token_id))
- self._tokenizer.post_processor = processors.TemplateProcessing(
- single=single, pair=pair, special_tokens=special_tokens
- )
- @property
- def add_eos_token(self):
- return self._add_eos_token
- @property
- def add_bos_token(self):
- return self._add_bos_token
- @add_eos_token.setter
- def add_eos_token(self, value):
- self._add_eos_token = value
- self.update_post_processor()
- @add_bos_token.setter
- def add_bos_token(self, value):
- self._add_bos_token = value
- self.update_post_processor()
- # Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.save_vocabulary
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not self.can_save_slow_tokenizer:
- raise ValueError(
- "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
- "tokenizer."
- )
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- out_vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
- copyfile(self.vocab_file, out_vocab_file)
- return (out_vocab_file,)
- # Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
- output = bos_token_id + token_ids_0 + eos_token_id
- if token_ids_1 is not None:
- output = output + bos_token_id + token_ids_1 + eos_token_id
- return output
|