| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Image/Text processor class for GIT
- """
- from typing import List, Optional, Union
- from ...feature_extraction_utils import BatchFeature
- from ...image_utils import ImageInput
- from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
- from ...tokenization_utils_base import PreTokenizedInput, TextInput
- class GitProcessorKwargs(ProcessingKwargs, total=False):
- _defaults = {}
- class GitProcessor(ProcessorMixin):
- r"""
- Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.
- [`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
- [`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.
- Args:
- image_processor ([`AutoImageProcessor`]):
- The image processor is a required input.
- tokenizer ([`AutoTokenizer`]):
- The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- image_processor_class = "AutoImageProcessor"
- tokenizer_class = "AutoTokenizer"
- def __init__(self, image_processor, tokenizer):
- super().__init__(image_processor, tokenizer)
- self.current_processor = self.image_processor
- def __call__(
- self,
- images: Optional[ImageInput] = None,
- text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
- audio=None,
- videos=None,
- **kwargs: Unpack[GitProcessorKwargs],
- ) -> BatchFeature:
- """
- Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
- and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
- the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
- CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
- of the above two methods for more information.
- Args:
- images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
- tensor. Both channels-first and channels-last formats are supported.
- text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`, *optional*):
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
- If set, will return tensors of a particular framework. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return NumPy `np.ndarray` objects.
- - `'jax'`: Return JAX `jnp.ndarray` objects.
- Returns:
- [`BatchFeature`]: A [`BatchFeature`] with the following fields:
- - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
- `None`).
- - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- """
- if text is None and images is None:
- raise ValueError("You have to specify either text or images. Both cannot be none.")
- # check if images and text inputs are reversed for BC
- images, text = _validate_images_text_input_order(images, text)
- output_kwargs = self._merge_kwargs(
- GitProcessorKwargs,
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
- **kwargs,
- )
- data = {}
- if text is not None:
- text_features = self.tokenizer(text, **output_kwargs["text_kwargs"])
- data.update(text_features)
- if images is not None:
- image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
- data.update(image_features)
- return BatchFeature(data=data, tensor_type=output_kwargs["common_kwargs"].get("return_tensors"))
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- return ["input_ids", "attention_mask", "pixel_values"]
|