| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for GLPN."""
- from typing import List, Optional, Union
- import numpy as np
- import PIL.Image
- from ...image_processing_utils import BaseImageProcessor, BatchFeature
- from ...image_transforms import resize, to_channel_dimension_format
- from ...image_utils import (
- ChannelDimension,
- PILImageResampling,
- get_image_size,
- infer_channel_dimension_format,
- is_scaled_image,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import TensorType, filter_out_non_signature_kwargs, logging
- logger = logging.get_logger(__name__)
- class GLPNImageProcessor(BaseImageProcessor):
- r"""
- Constructs a GLPN image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of
- `size_divisor`. Can be overridden by `do_resize` in `preprocess`.
- size_divisor (`int`, *optional*, defaults to 32):
- When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest
- multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`.
- resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`):
- Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be
- overridden by `do_rescale` in `preprocess`.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_resize: bool = True,
- size_divisor: int = 32,
- resample=PILImageResampling.BILINEAR,
- do_rescale: bool = True,
- **kwargs,
- ) -> None:
- self.do_resize = do_resize
- self.do_rescale = do_rescale
- self.size_divisor = size_divisor
- self.resample = resample
- super().__init__(**kwargs)
- def resize(
- self,
- image: np.ndarray,
- size_divisor: int,
- resample: PILImageResampling = PILImageResampling.BILINEAR,
- data_format: Optional[ChannelDimension] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor.
- If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160).
- Args:
- image (`np.ndarray`):
- The image to resize.
- size_divisor (`int`):
- The image is resized so its height and width are rounded down to the closest multiple of
- `size_divisor`.
- resample:
- `PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
- data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the output image. If `None`, the channel dimension format of the input
- image is used. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not set, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Returns:
- `np.ndarray`: The resized image.
- """
- height, width = get_image_size(image, channel_dim=input_data_format)
- # Rounds the height and width down to the closest multiple of size_divisor
- new_h = height // size_divisor * size_divisor
- new_w = width // size_divisor * size_divisor
- image = resize(
- image,
- (new_h, new_w),
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- return image
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]],
- do_resize: Optional[bool] = None,
- size_divisor: Optional[int] = None,
- resample=None,
- do_rescale: Optional[bool] = None,
- return_tensors: Optional[Union[TensorType, str]] = None,
- data_format: ChannelDimension = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> BatchFeature:
- """
- Preprocess the given images.
- Args:
- images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`):
- Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_normalize=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`.
- size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
- When `do_resize` is `True`, images are resized so their height and width are rounded down to the
- closest multiple of `size_divisor`.
- resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`):
- `PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
- an effect if `do_resize` is set to `True`.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - `None`: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- size_divisor = size_divisor if size_divisor is not None else self.size_divisor
- resample = resample if resample is not None else self.resample
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- # Here, the rescale() method uses a constant rescale_factor. It does not need to be validated
- # with a rescale_factor.
- validate_preprocess_arguments(
- do_resize=do_resize,
- size=size_divisor, # Here, size_divisor is used as a parameter for optimal resizing instead of size.
- resample=resample,
- )
- # All transformations expect numpy arrays.
- images = [to_numpy_array(img) for img in images]
- if is_scaled_image(images[0]) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- if do_resize:
- images = [
- self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format)
- for image in images
- ]
- if do_rescale:
- images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images]
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
- ]
- data = {"pixel_values": images}
- return BatchFeature(data=data, tensor_type=return_tensors)
|