| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- # coding=utf-8
- # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization classes for OpenAI GPT."""
- import json
- from typing import Optional, Tuple
- from tokenizers import pre_tokenizers
- from ...tokenization_utils_base import BatchEncoding
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import logging
- from .tokenization_gpt2 import GPT2Tokenizer
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
- class GPT2TokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
- Byte-Pair-Encoding.
- This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
- be encoded differently whether it is at the beginning of the sentence (without space) or not:
- ```python
- >>> from transformers import GPT2TokenizerFast
- >>> tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2")
- >>> tokenizer("Hello world")["input_ids"]
- [15496, 995]
- >>> tokenizer(" Hello world")["input_ids"]
- [18435, 995]
- ```
- You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
- the model was not pretrained this way, it might yield a decrease in performance.
- <Tip>
- When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
- </Tip>
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`, *optional*):
- Path to the vocabulary file.
- merges_file (`str`, *optional*):
- Path to the merges file.
- tokenizer_file (`str`, *optional*):
- Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
- contains everything needed to load the tokenizer.
- unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
- The beginning of sequence token.
- eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
- The end of sequence token.
- add_prefix_space (`bool`, *optional*, defaults to `False`):
- Whether or not to add an initial space to the input. This allows to treat the leading word just as any
- other word. (GPT2 tokenizer detect beginning of words by the preceding space).
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- slow_tokenizer_class = GPT2Tokenizer
- def __init__(
- self,
- vocab_file=None,
- merges_file=None,
- tokenizer_file=None,
- unk_token="<|endoftext|>",
- bos_token="<|endoftext|>",
- eos_token="<|endoftext|>",
- add_prefix_space=False,
- **kwargs,
- ):
- super().__init__(
- vocab_file=vocab_file,
- merges_file=merges_file,
- tokenizer_file=tokenizer_file,
- unk_token=unk_token,
- bos_token=bos_token,
- eos_token=eos_token,
- add_prefix_space=add_prefix_space,
- **kwargs,
- )
- self.add_bos_token = kwargs.pop("add_bos_token", False)
- pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
- if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
- pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
- pre_tok_state["add_prefix_space"] = add_prefix_space
- self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
- self.add_prefix_space = add_prefix_space
- def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
- is_split_into_words = kwargs.get("is_split_into_words", False)
- assert self.add_prefix_space or not is_split_into_words, (
- f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
- "to use it with pretokenized inputs."
- )
- return super()._batch_encode_plus(*args, **kwargs)
- def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
- is_split_into_words = kwargs.get("is_split_into_words", False)
- assert self.add_prefix_space or not is_split_into_words, (
- f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
- "to use it with pretokenized inputs."
- )
- return super()._encode_plus(*args, **kwargs)
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- files = self._tokenizer.model.save(save_directory, name=filename_prefix)
- return tuple(files)
|