| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644 |
- # coding=utf-8
- # Copyright 2020 The Google AI Language Team Authors, Allegro.pl, Facebook Inc. and the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import json
- import os
- import re
- import unicodedata
- from typing import List, Optional, Tuple
- from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
- from ...utils import logging
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {
- "vocab_file": "vocab.json",
- "merges_file": "merges.txt",
- }
- # Copied from transformers.models.xlm.tokenization_xlm.get_pairs
- def get_pairs(word):
- """
- Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
- strings)
- """
- pairs = set()
- prev_char = word[0]
- for char in word[1:]:
- pairs.add((prev_char, char))
- prev_char = char
- return pairs
- # Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct
- def replace_unicode_punct(text):
- """
- Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
- """
- text = text.replace(",", ",")
- text = re.sub(r"。\s*", ". ", text)
- text = text.replace("、", ",")
- text = text.replace("”", '"')
- text = text.replace("“", '"')
- text = text.replace("∶", ":")
- text = text.replace(":", ":")
- text = text.replace("?", "?")
- text = text.replace("《", '"')
- text = text.replace("》", '"')
- text = text.replace(")", ")")
- text = text.replace("!", "!")
- text = text.replace("(", "(")
- text = text.replace(";", ";")
- text = text.replace("1", "1")
- text = text.replace("」", '"')
- text = text.replace("「", '"')
- text = text.replace("0", "0")
- text = text.replace("3", "3")
- text = text.replace("2", "2")
- text = text.replace("5", "5")
- text = text.replace("6", "6")
- text = text.replace("9", "9")
- text = text.replace("7", "7")
- text = text.replace("8", "8")
- text = text.replace("4", "4")
- text = re.sub(r".\s*", ". ", text)
- text = text.replace("~", "~")
- text = text.replace("’", "'")
- text = text.replace("…", "...")
- text = text.replace("━", "-")
- text = text.replace("〈", "<")
- text = text.replace("〉", ">")
- text = text.replace("【", "[")
- text = text.replace("】", "]")
- text = text.replace("%", "%")
- return text
- # Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char
- def remove_non_printing_char(text):
- """
- Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
- """
- output = []
- for char in text:
- cat = unicodedata.category(char)
- if cat.startswith("C"):
- continue
- output.append(char)
- return "".join(output)
- # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
- def whitespace_tokenize(text):
- """Runs basic whitespace cleaning and splitting on a piece of text."""
- text = text.strip()
- if not text:
- return []
- tokens = text.split()
- return tokens
- # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
- class BasicTokenizer:
- """
- Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
- Args:
- do_lower_case (`bool`, *optional*, defaults to `True`):
- Whether or not to lowercase the input when tokenizing.
- never_split (`Iterable`, *optional*):
- Collection of tokens which will never be split during tokenization. Only has an effect when
- `do_basic_tokenize=True`
- tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
- Whether or not to tokenize Chinese characters.
- This should likely be deactivated for Japanese (see this
- [issue](https://github.com/huggingface/transformers/issues/328)).
- strip_accents (`bool`, *optional*):
- Whether or not to strip all accents. If this option is not specified, then it will be determined by the
- value for `lowercase` (as in the original BERT).
- do_split_on_punc (`bool`, *optional*, defaults to `True`):
- In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
- the full context of the words, such as contractions.
- """
- def __init__(
- self,
- do_lower_case=True,
- never_split=None,
- tokenize_chinese_chars=True,
- strip_accents=None,
- do_split_on_punc=True,
- ):
- if never_split is None:
- never_split = []
- self.do_lower_case = do_lower_case
- self.never_split = set(never_split)
- self.tokenize_chinese_chars = tokenize_chinese_chars
- self.strip_accents = strip_accents
- self.do_split_on_punc = do_split_on_punc
- def tokenize(self, text, never_split=None):
- """
- Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
- Args:
- never_split (`List[str]`, *optional*)
- Kept for backward compatibility purposes. Now implemented directly at the base class level (see
- [`PreTrainedTokenizer.tokenize`]) List of token not to split.
- """
- # union() returns a new set by concatenating the two sets.
- never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
- text = self._clean_text(text)
- # This was added on November 1st, 2018 for the multilingual and Chinese
- # models. This is also applied to the English models now, but it doesn't
- # matter since the English models were not trained on any Chinese data
- # and generally don't have any Chinese data in them (there are Chinese
- # characters in the vocabulary because Wikipedia does have some Chinese
- # words in the English Wikipedia.).
- if self.tokenize_chinese_chars:
- text = self._tokenize_chinese_chars(text)
- # prevents treating the same character with different unicode codepoints as different characters
- unicode_normalized_text = unicodedata.normalize("NFC", text)
- orig_tokens = whitespace_tokenize(unicode_normalized_text)
- split_tokens = []
- for token in orig_tokens:
- if token not in never_split:
- if self.do_lower_case:
- token = token.lower()
- if self.strip_accents is not False:
- token = self._run_strip_accents(token)
- elif self.strip_accents:
- token = self._run_strip_accents(token)
- split_tokens.extend(self._run_split_on_punc(token, never_split))
- output_tokens = whitespace_tokenize(" ".join(split_tokens))
- return output_tokens
- def _run_strip_accents(self, text):
- """Strips accents from a piece of text."""
- text = unicodedata.normalize("NFD", text)
- output = []
- for char in text:
- cat = unicodedata.category(char)
- if cat == "Mn":
- continue
- output.append(char)
- return "".join(output)
- def _run_split_on_punc(self, text, never_split=None):
- """Splits punctuation on a piece of text."""
- if not self.do_split_on_punc or (never_split is not None and text in never_split):
- return [text]
- chars = list(text)
- i = 0
- start_new_word = True
- output = []
- while i < len(chars):
- char = chars[i]
- if _is_punctuation(char):
- output.append([char])
- start_new_word = True
- else:
- if start_new_word:
- output.append([])
- start_new_word = False
- output[-1].append(char)
- i += 1
- return ["".join(x) for x in output]
- def _tokenize_chinese_chars(self, text):
- """Adds whitespace around any CJK character."""
- output = []
- for char in text:
- cp = ord(char)
- if self._is_chinese_char(cp):
- output.append(" ")
- output.append(char)
- output.append(" ")
- else:
- output.append(char)
- return "".join(output)
- def _is_chinese_char(self, cp):
- """Checks whether CP is the codepoint of a CJK character."""
- # This defines a "chinese character" as anything in the CJK Unicode block:
- # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
- #
- # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
- # despite its name. The modern Korean Hangul alphabet is a different block,
- # as is Japanese Hiragana and Katakana. Those alphabets are used to write
- # space-separated words, so they are not treated specially and handled
- # like the all of the other languages.
- if (
- (cp >= 0x4E00 and cp <= 0x9FFF)
- or (cp >= 0x3400 and cp <= 0x4DBF) #
- or (cp >= 0x20000 and cp <= 0x2A6DF) #
- or (cp >= 0x2A700 and cp <= 0x2B73F) #
- or (cp >= 0x2B740 and cp <= 0x2B81F) #
- or (cp >= 0x2B820 and cp <= 0x2CEAF) #
- or (cp >= 0xF900 and cp <= 0xFAFF)
- or (cp >= 0x2F800 and cp <= 0x2FA1F) #
- ): #
- return True
- return False
- def _clean_text(self, text):
- """Performs invalid character removal and whitespace cleanup on text."""
- output = []
- for char in text:
- cp = ord(char)
- if cp == 0 or cp == 0xFFFD or _is_control(char):
- continue
- if _is_whitespace(char):
- output.append(" ")
- else:
- output.append(char)
- return "".join(output)
- class HerbertTokenizer(PreTrainedTokenizer):
- """
- Construct a BPE tokenizer for HerBERT.
- Peculiarities:
- - uses BERT's pre-tokenizer: BaseTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of a
- punctuation character will be treated separately.
- - Such pretokenized input is BPE subtokenized
- This tokenizer inherits from [`XLMTokenizer`] which contains most of the methods. Users should refer to the
- superclass for more information regarding methods.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- def __init__(
- self,
- vocab_file,
- merges_file,
- tokenizer_file=None,
- cls_token="<s>",
- unk_token="<unk>",
- pad_token="<pad>",
- mask_token="<mask>",
- sep_token="</s>",
- bos_token="<s>",
- do_lowercase_and_remove_accent=False,
- additional_special_tokens=[
- "<special0>",
- "<special1>",
- "<special2>",
- "<special3>",
- "<special4>",
- "<special5>",
- "<special6>",
- "<special7>",
- "<special8>",
- "<special9>",
- ],
- lang2id=None,
- id2lang=None,
- **kwargs,
- ):
- try:
- import sacremoses
- except ImportError:
- raise ImportError(
- "You need to install sacremoses to use HerbertTokenizer. "
- "See https://pypi.org/project/sacremoses/ for installation."
- )
- self.sm = sacremoses
- # cache of sm.MosesPunctNormalizer instance
- self.cache_moses_punct_normalizer = {}
- # cache of sm.MosesTokenizer instance
- self.cache_moses_tokenizer = {}
- self.lang_with_custom_tokenizer = {"zh", "th", "ja"}
- # True for current supported model (v1.2.0), False for XLM-17 & 100
- self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent
- self.lang2id = lang2id
- self.id2lang = id2lang
- if lang2id is not None and id2lang is not None:
- assert len(lang2id) == len(id2lang)
- self.ja_word_tokenizer = None
- self.zh_word_tokenizer = None
- with open(vocab_file, encoding="utf-8") as vocab_handle:
- self.encoder = json.load(vocab_handle)
- self.decoder = {v: k for k, v in self.encoder.items()}
- with open(merges_file, encoding="utf-8") as merges_handle:
- merges = merges_handle.read().split("\n")[:-1]
- merges = [tuple(merge.split()[:2]) for merge in merges]
- self.bpe_ranks = dict(zip(merges, range(len(merges))))
- self.cache = {}
- super().__init__(
- unk_token=unk_token,
- bos_token=bos_token,
- sep_token=sep_token,
- pad_token=pad_token,
- cls_token=cls_token,
- mask_token=mask_token,
- additional_special_tokens=additional_special_tokens,
- lang2id=lang2id,
- id2lang=id2lang,
- do_lowercase_and_remove_accent=do_lowercase_and_remove_accent,
- tokenizer_file=None,
- **kwargs,
- )
- self.bert_pre_tokenizer = BasicTokenizer(
- do_lower_case=False,
- never_split=self.all_special_tokens,
- tokenize_chinese_chars=False,
- strip_accents=False,
- )
- @property
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case
- def do_lower_case(self):
- return self.do_lowercase_and_remove_accent
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm
- def moses_punct_norm(self, text, lang):
- if lang not in self.cache_moses_punct_normalizer:
- punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang)
- self.cache_moses_punct_normalizer[lang] = punct_normalizer
- else:
- punct_normalizer = self.cache_moses_punct_normalizer[lang]
- return punct_normalizer.normalize(text)
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize
- def moses_tokenize(self, text, lang):
- if lang not in self.cache_moses_tokenizer:
- moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
- self.cache_moses_tokenizer[lang] = moses_tokenizer
- else:
- moses_tokenizer = self.cache_moses_tokenizer[lang]
- return moses_tokenizer.tokenize(text, return_str=False, escape=False)
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline
- def moses_pipeline(self, text, lang):
- text = replace_unicode_punct(text)
- text = self.moses_punct_norm(text, lang)
- text = remove_non_printing_char(text)
- return text
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize
- def ja_tokenize(self, text):
- if self.ja_word_tokenizer is None:
- try:
- import Mykytea
- self.ja_word_tokenizer = Mykytea.Mykytea(
- f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin"
- )
- except (AttributeError, ImportError):
- logger.error(
- "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper"
- " (https://github.com/chezou/Mykytea-python) with the following steps"
- )
- logger.error("1. git clone git@github.com:neubig/kytea.git && cd kytea")
- logger.error("2. autoreconf -i")
- logger.error("3. ./configure --prefix=$HOME/local")
- logger.error("4. make && make install")
- logger.error("5. pip install kytea")
- raise
- return list(self.ja_word_tokenizer.getWS(text))
- @property
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size
- def vocab_size(self):
- return len(self.encoder)
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab
- def get_vocab(self):
- return dict(self.encoder, **self.added_tokens_encoder)
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe
- def bpe(self, token):
- word = tuple(token[:-1]) + (token[-1] + "</w>",)
- if token in self.cache:
- return self.cache[token]
- pairs = get_pairs(word)
- if not pairs:
- return token + "</w>"
- while True:
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
- if bigram not in self.bpe_ranks:
- break
- first, second = bigram
- new_word = []
- i = 0
- while i < len(word):
- try:
- j = word.index(first, i)
- except ValueError:
- new_word.extend(word[i:])
- break
- else:
- new_word.extend(word[i:j])
- i = j
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
- new_word.append(first + second)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- new_word = tuple(new_word)
- word = new_word
- if len(word) == 1:
- break
- else:
- pairs = get_pairs(word)
- word = " ".join(word)
- if word == "\n </w>":
- word = "\n</w>"
- self.cache[token] = word
- return word
- def _tokenize(self, text):
- pre_tokens = self.bert_pre_tokenizer.tokenize(text)
- split_tokens = []
- for token in pre_tokens:
- if token:
- split_tokens.extend(list(self.bpe(token).split(" ")))
- return split_tokens
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.encoder.get(token, self.encoder.get(self.unk_token))
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.decoder.get(index, self.unk_token)
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- out_string = "".join(tokens).replace("</w>", " ").strip()
- return out_string
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. An XLM sequence has the following format:
- - single sequence: `<s> X </s>`
- - pair of sequences: `<s> A </s> B </s>`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- bos = [self.bos_token_id]
- sep = [self.sep_token_id]
- if token_ids_1 is None:
- return bos + token_ids_0 + sep
- return bos + token_ids_0 + sep + token_ids_1 + sep
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask
- def get_special_tokens_mask(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- if token_ids_1 is not None:
- return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
- return [1] + ([0] * len(token_ids_0)) + [1]
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence
- pair mask has the following format:
- ```
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- ```
- If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- merge_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
- )
- with open(vocab_file, "w", encoding="utf-8") as f:
- f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
- index = 0
- with open(merge_file, "w", encoding="utf-8") as writer:
- for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
- if index != token_index:
- logger.warning(
- f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
- " Please check that the tokenizer is not corrupted!"
- )
- index = token_index
- writer.write(" ".join(bpe_tokens) + "\n")
- index += 1
- return vocab_file, merge_file
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__
- def __getstate__(self):
- state = self.__dict__.copy()
- state["sm"] = None
- return state
- # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__
- def __setstate__(self, d):
- self.__dict__ = d
- try:
- import sacremoses
- except ImportError:
- raise ImportError(
- "You need to install sacremoses to use XLMTokenizer. "
- "See https://pypi.org/project/sacremoses/ for installation."
- )
- self.sm = sacremoses
|