| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- # coding=utf-8
- # Copyright 2020 The Google AI Language Team Authors, Allegro.pl, Facebook Inc. and the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import List, Optional, Tuple
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import logging
- from .tokenization_herbert import HerbertTokenizer
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
- class HerbertTokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a "Fast" BPE tokenizer for HerBERT (backed by HuggingFace's *tokenizers* library).
- Peculiarities:
- - uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of
- a punctuation character will be treated separately.
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the
- superclass for more information regarding methods.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- merges_file (`str`):
- Path to the merges file.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- slow_tokenizer_class = HerbertTokenizer
- def __init__(
- self,
- vocab_file=None,
- merges_file=None,
- tokenizer_file=None,
- cls_token="<s>",
- unk_token="<unk>",
- pad_token="<pad>",
- mask_token="<mask>",
- sep_token="</s>",
- **kwargs,
- ):
- super().__init__(
- vocab_file,
- merges_file,
- tokenizer_file=tokenizer_file,
- cls_token=cls_token,
- unk_token=unk_token,
- pad_token=pad_token,
- mask_token=mask_token,
- sep_token=sep_token,
- **kwargs,
- )
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. An HerBERT, like BERT sequence has the following format:
- - single sequence: `<s> X </s>`
- - pair of sequences: `<s> A </s> B </s>`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- cls = [self.cls_token_id]
- sep = [self.sep_token_id]
- if token_ids_1 is None:
- return cls + token_ids_0 + sep
- return cls + token_ids_0 + sep + token_ids_1 + sep
- def get_special_tokens_mask(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- if token_ids_1 is None:
- return [1] + ([0] * len(token_ids_0)) + [1]
- return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. HerBERT, like
- BERT sequence pair mask has the following format:
- ```
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- ```
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- files = self._tokenizer.model.save(save_directory, name=filename_prefix)
- return tuple(files)
|