| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- # coding=utf-8
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Idefics model configuration"""
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class IdeficsVisionConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
- Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the Idefics-9B.
- e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`)
- image_size (`int`, *optional*, defaults to 224):
- The size (resolution) of each image.
- intermediate_size (`int`, *optional*, defaults to 5120):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- patch_size (`int`, *optional*, defaults to 14):
- The size (resolution) of each patch.
- num_hidden_layers (`int`, *optional*, defaults to 32):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 16):
- Number of attention heads for each attention layer in the Transformer encoder.
- image_num_channels (`int`, *optional*, defaults to `3`):
- Number of image channels.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
- layer_norm_eps (`float`, *optional*, defaults to 1e-5):
- The epsilon used by the layer normalization layers.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- initializer_factor (`float`, *optional*, defaults to 1.0):
- A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
- testing).
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- """
- model_type = "idefics"
- attribute_map = {
- "hidden_size": "embed_dim",
- }
- def __init__(
- self,
- embed_dim=768,
- image_size=224,
- intermediate_size=5120,
- patch_size=14,
- num_hidden_layers=32,
- num_attention_heads=16,
- num_channels=3,
- hidden_act="gelu",
- layer_norm_eps=1e-5,
- attention_dropout=0.0,
- initializer_range=0.02,
- initializer_factor=1.0,
- **kwargs,
- ):
- self.embed_dim = embed_dim
- self.image_size = image_size
- self.intermediate_size = intermediate_size
- self.patch_size = patch_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.num_channels = num_channels
- self.layer_norm_eps = layer_norm_eps
- self.attention_dropout = attention_dropout
- self.initializer_range = initializer_range
- self.initializer_factor = initializer_factor
- self.hidden_act = hidden_act
- super().__init__(**kwargs)
- class IdeficsPerceiverConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
- Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the Idefics-9B.
- e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- use_resampler (`bool`, *optional*, defaults to `False`):
- Whether or not to use the resampler
- resampler_n_latents (`int`, *optional*, defaults to ):
- Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
- resampler_depth (`int`, *optional*, defaults to 6):
- Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
- resampler_n_heads (`int`, *optional*, defaults to 16):
- Number of heads in each Transformer block (for multi-headed self-attention).
- resampler_head_dim (`int`, *optional*, defaults to 96):
- Dimensionality of each head projection in the Transformer block.
- qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
- Whether or not to use qk layer norms in perceiver
- """
- model_type = "idefics"
- def __init__(
- self,
- use_resampler=False,
- resampler_n_latents=64,
- resampler_depth=6,
- resampler_n_heads=16,
- resampler_head_dim=96,
- qk_layer_norms_perceiver=False,
- **kwargs,
- ):
- self.use_resampler = use_resampler
- self.resampler_n_latents = resampler_n_latents
- self.resampler_depth = resampler_depth
- self.resampler_n_heads = resampler_n_heads
- self.resampler_head_dim = resampler_head_dim
- self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
- super().__init__(**kwargs)
- class IdeficsConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
- Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the Idefics-9B.
- e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- additional_vocab_size (`int`, *optional*, defaults to 0):
- Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
- are always trainable whereas regular vocab tokens can be frozen or not.
- vocab_size (`int`, *optional*, defaults to 32000):
- Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`~IdeficsModel`]
- hidden_size (`int`, *optional*, defaults to 4096):
- Dimension of the hidden representations.
- intermediate_size (`int`, *optional*, defaults to 11008):
- Dimension of the MLP representations.
- num_hidden_layers (`int`, *optional*, defaults to 32):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 32):
- Number of attention heads for each attention layer in the Transformer encoder.
- dropout (`float`, *optional*, defaults to 0.0):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
- The non-linear activation function (function or string) in the decoder.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- alpha_initializer (`str`, *optional*, defaults to `"zeros"`):
- Initialization type for the alphas.
- alphas_initializer_range (`float`, *optional*, defaults to 0.0):
- The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross
- Attention.
- alpha_type (`str`, *optional*, defaults to `"float"`):
- Whether the gating alphas should be vectors or single floats.
- rms_norm_eps (`float`, *optional*, defaults to 1e-6):
- The epsilon used by the rms normalization layers.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if `config.is_decoder=True`.
- pad_token_id (`int`, *optional*, defaults to 0)
- Padding token id.
- bos_token_id (`int`, *optional*, defaults to 1)
- Beginning of stream token id.
- eos_token_id (`int`, *optional*, defaults to 2)
- End of stream token id.
- tie_word_embeddings(`bool`, *optional*, defaults to `False`):
- Whether to tie weight embeddings
- cross_layer_interval (`int`, *optional*, default to 1)
- Interval for cross attention (from text to image) layers.
- qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k
- freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers
- freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`):
- Exceptions to freezing text layers when `freeze_text_layers` is `True`
- freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head
- freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers
- freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`):
- Exceptions to freezing vision layers when `freeze_vision_layers` is `True`
- use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler
- vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict
- perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict
- Example:
- ```python
- >>> from transformers import IdeficsModel, IdeficsConfig
- >>> # Initializing a Idefics idefics-9b style configuration
- >>> configuration = IdeficsConfig()
- >>> # Initializing a model from the idefics-9b style configuration
- >>> model = IdeficsModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "idefics"
- is_composition = False
- def __init__(
- self,
- vocab_size=32000,
- additional_vocab_size=0,
- hidden_size=4096,
- intermediate_size=11008,
- num_hidden_layers=32,
- num_attention_heads=32,
- dropout=0.0,
- hidden_act="silu",
- initializer_range=0.02,
- alpha_initializer="zeros",
- alphas_initializer_range=0.0,
- alpha_type="float",
- rms_norm_eps=1e-6,
- use_cache=True,
- pad_token_id=0,
- bos_token_id=1,
- eos_token_id=2,
- tie_word_embeddings=False,
- cross_layer_interval=1,
- qk_layer_norms=False,
- freeze_text_layers=True,
- freeze_text_module_exceptions=[],
- freeze_lm_head=False,
- freeze_vision_layers=True,
- freeze_vision_module_exceptions=[],
- use_resampler=False,
- vision_config=None,
- perceiver_config=None,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.additional_vocab_size = additional_vocab_size
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.dropout = dropout
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- self.alpha_initializer = alpha_initializer
- self.alphas_initializer_range = alphas_initializer_range
- self.alpha_type = alpha_type
- self.rms_norm_eps = rms_norm_eps
- self.use_cache = use_cache
- self.cross_layer_interval = cross_layer_interval
- self.qk_layer_norms = qk_layer_norms
- self.freeze_vision_layers = freeze_vision_layers
- self.freeze_text_layers = freeze_text_layers
- self.freeze_text_module_exceptions = freeze_text_module_exceptions
- self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
- self.freeze_lm_head = freeze_lm_head
- self.use_resampler = use_resampler
- if perceiver_config is None:
- self.perceiver_config = IdeficsPerceiverConfig()
- elif isinstance(perceiver_config, dict):
- self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config)
- elif isinstance(perceiver_config, IdeficsPerceiverConfig):
- self.perceiver_config = perceiver_config
- if vision_config is None:
- self.vision_config = IdeficsVisionConfig()
- elif isinstance(vision_config, dict):
- self.vision_config = IdeficsVisionConfig(**vision_config)
- elif isinstance(vision_config, IdeficsVisionConfig):
- self.vision_config = vision_config
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- tie_word_embeddings=tie_word_embeddings,
- **kwargs,
- )
- # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
- # PretrainedConfig.from_dict first instantiates the class with the config dict and only then
- # updates the config object with `kwargs` from from_pretrained, so during the instantiation
- # of this object many attributes have default values and haven't yet been overridden.
- # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
|