| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- # coding=utf-8
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Idefics2 model configuration"""
- import os
- from typing import Union
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- from ..auto import CONFIG_MAPPING
- logger = logging.get_logger(__name__)
- class Idefics2VisionConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a
- Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
- [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model
- [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b).
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- num_channels (`int`, *optional*, defaults to 3):
- Number of channels in the input images.
- image_size (`int`, *optional*, defaults to 224):
- The size (resolution) of each image.
- patch_size (`int`, *optional*, defaults to 32):
- The size (resolution) of each patch.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the layer normalization layers.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation for initializing all weight matrices in the model.
- Example:
- ```python
- >>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
- >>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig
- >>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration
- >>> configuration = Idefics2VisionConfig()
- >>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration
- >>> model = Idefics2VisionTransformer(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "idefics2"
- def __init__(
- self,
- hidden_size=768,
- intermediate_size=3072,
- num_hidden_layers=12,
- num_attention_heads=12,
- num_channels=3,
- image_size=224,
- patch_size=32,
- hidden_act="gelu_pytorch_tanh",
- layer_norm_eps=1e-6,
- attention_dropout=0.0,
- initializer_range=0.02,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.num_channels = num_channels
- self.patch_size = patch_size
- self.image_size = image_size
- self.attention_dropout = attention_dropout
- self.layer_norm_eps = layer_norm_eps
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
- # get the vision config dict if we are loading from Idefics2Config
- if config_dict.get("model_type") == "idefics2":
- config_dict = config_dict["vision_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class Idefics2PerceiverConfig(PretrainedConfig):
- r"""
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
- The non-linear activation function (function or string) in the perceiver block.
- hidden_size (`int`, *optional*, defaults to 4096):
- Dimension of the hidden representations.
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the rms normalization layers.
- resampler_n_latents (`int`, *optional*, defaults to 64):
- Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
- resampler_depth (`int`, *optional*, defaults to 3):
- Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3).
- resampler_n_heads (`int`, *optional*, defaults to 16):
- Number of heads in each Transformer block (for multi-headed self-attention).
- resampler_head_dim (`int`, *optional*, defaults to 96):
- Dimensionality of each head projection in the Transformer block.
- num_key_value_heads (`int`, *optional*, defaults to 4):
- Number of key-value heads in the perceiver attention block.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- """
- model_type = "idefics2"
- def __init__(
- self,
- hidden_act="silu",
- hidden_size=4096,
- rms_norm_eps=1e-06,
- resampler_n_latents=64,
- resampler_depth=3,
- resampler_n_heads=16,
- resampler_head_dim=96,
- num_key_value_heads=4,
- attention_dropout=0.0,
- **kwargs,
- ):
- self.hidden_act = hidden_act
- self.hidden_size = hidden_size
- self.rms_norm_eps = rms_norm_eps
- self.resampler_n_latents = resampler_n_latents
- self.resampler_depth = resampler_depth
- self.resampler_n_heads = resampler_n_heads
- self.num_key_value_heads = num_key_value_heads
- self.resampler_head_dim = resampler_head_dim
- self.attention_dropout = attention_dropout
- if self.num_key_value_heads > self.resampler_n_heads:
- raise ValueError(
- f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to"
- f" resampler_n_heads={self.resampler_n_heads}"
- )
- super().__init__(**kwargs)
- class Idefics2Config(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`Idefics2Model`]. It is used to instantiate a
- Idefics2 model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the model of the Idefics2
- [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should cache the key/value pairs of the attention mechanism.
- image_token_id (`int`, *optional*, defaults to 32001):
- The id of the "image" token.
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
- Whether or not to tie the word embeddings with the token embeddings.
- vision_config (`IdeficsVisionConfig` or `dict`, *optional*):
- Custom vision config or dict
- perceiver_config (`IdeficsPerceiverConfig` or `dict`, *optional*):
- Custom perceiver config or dict
- text_config (`MistralConfig` or `dict`, *optional*):
- Custom text config or dict for the text model
- Example:
- ```python
- >>> from transformers import Idefics2Model, Idefics2Config
- >>> # Initializing configuration
- >>> configuration = Idefics2Config()
- >>> # Initializing a model from the configuration
- >>> model = Idefics2Model(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "idefics2"
- is_composition = True
- def __init__(
- self,
- use_cache=True,
- image_token_id=32_001,
- tie_word_embeddings=False,
- vision_config=None,
- perceiver_config=None,
- text_config=None,
- **kwargs,
- ):
- self.image_token_id = image_token_id
- self.use_cache = use_cache
- self.tie_word_embeddings = tie_word_embeddings
- if perceiver_config is None:
- self.perceiver_config = Idefics2PerceiverConfig()
- logger.info("perciver_config is None, using default perceiver config")
- elif isinstance(perceiver_config, dict):
- self.perceiver_config = Idefics2PerceiverConfig(**perceiver_config)
- elif isinstance(perceiver_config, Idefics2PerceiverConfig):
- self.perceiver_config = perceiver_config
- if vision_config is None:
- self.vision_config = Idefics2VisionConfig()
- logger.info("vision_config is None, using default vision config")
- elif isinstance(vision_config, dict):
- self.vision_config = Idefics2VisionConfig(**vision_config)
- elif isinstance(vision_config, Idefics2VisionConfig):
- self.vision_config = vision_config
- if isinstance(text_config, dict):
- text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "mistral"
- text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
- elif text_config is None:
- logger.info("text_config is None, using default text config")
- text_config = CONFIG_MAPPING["mistral"](
- max_position_embeddings=4096 * 8,
- rms_norm_eps=1e-5,
- # None in the original configuration_mistral, we set it to the unk_token_id
- pad_token_id=0,
- tie_word_embeddings=False,
- )
- self.text_config = text_config
- if self.text_config.hidden_size != self.perceiver_config.hidden_size:
- self.perceiver_config.hidden_size = self.text_config.hidden_size
- self.perceiver_config.rms_norm_eps = self.text_config.rms_norm_eps
- logger.warning_once(
- "Perceiver config has a different `hidden_size` than text config, which means default values were used. "
- "In your model's config on the hub, add `hidden_size` and `rms_norm_eps` keys under the `perceiver_config` dict. "
- )
- super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)
|