| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596 |
- # coding=utf-8
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature
- from ...image_transforms import PaddingMode, pad, resize, to_channel_dimension_format
- from ...image_utils import (
- IMAGENET_STANDARD_MEAN,
- IMAGENET_STANDARD_STD,
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- get_image_size,
- infer_channel_dimension_format,
- is_scaled_image,
- is_valid_image,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import TensorType, is_vision_available, logging
- logger = logging.get_logger(__name__)
- if is_vision_available():
- import PIL
- from PIL import Image
- def get_resize_output_image_size(image, size, input_data_format) -> Tuple[int, int]:
- """
- Get the output size of the image after resizing given a dictionary specifying the max and min sizes.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Size of the output image containing the keys "shortest_edge" and "longest_edge".
- input_data_format (`ChannelDimension` or `str`):
- The channel dimension format of the input image.
- Returns:
- The output size of the image after resizing.
- """
- height, width = get_image_size(image, channel_dim=input_data_format)
- min_len = size["shortest_edge"]
- max_len = size["longest_edge"]
- aspect_ratio = width / height
- if width >= height and width > max_len:
- width = max_len
- height = int(width / aspect_ratio)
- elif height > width and height > max_len:
- height = max_len
- width = int(height * aspect_ratio)
- height = max(height, min_len)
- width = max(width, min_len)
- return height, width
- def make_list_of_images(images: ImageInput) -> List[List[np.ndarray]]:
- """
- Convert a single image or a list of images to a list of numpy arrays.
- Args:
- images (`ImageInput`):
- A single image or a list of images.
- Returns:
- A list of numpy arrays.
- """
- # If it's a single image, convert it to a list of lists
- if is_valid_image(images):
- images = [[images]]
- # If it's a list of images, it's a single batch, so convert it to a list of lists
- elif isinstance(images, (list, tuple)) and len(images) > 0 and is_valid_image(images[0]):
- images = [images]
- # If it's a list of batches, it's already in the right format
- elif (
- isinstance(images, (list, tuple))
- and len(images) > 0
- and isinstance(images[0], (list, tuple))
- and is_valid_image(images[0][0])
- ):
- pass
- else:
- raise ValueError(
- "Invalid input type. Must be a single image, a list of images, or a list of batches of images."
- )
- return images
- # Copied from transformers.models.detr.image_processing_detr.max_across_indices
- def max_across_indices(values: Iterable[Any]) -> List[Any]:
- """
- Return the maximum value across all indices of an iterable of values.
- """
- return [max(values_i) for values_i in zip(*values)]
- def get_max_height_width(
- images_list: List[List[np.ndarray]], input_data_format: Optional[Union[str, ChannelDimension]] = None
- ) -> List[int]:
- """
- Get the maximum height and width across all images in a batch.
- """
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(images_list[0][0])
- image_sizes = []
- for images in images_list:
- for image in images:
- image_sizes.append(get_image_size(image, channel_dim=input_data_format))
- max_height, max_width = max_across_indices(image_sizes)
- return (max_height, max_width)
- # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
- def make_pixel_mask(
- image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
- ) -> np.ndarray:
- """
- Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
- Args:
- image (`np.ndarray`):
- Image to make the pixel mask for.
- output_size (`Tuple[int, int]`):
- Output size of the mask.
- """
- input_height, input_width = get_image_size(image, channel_dim=input_data_format)
- mask = np.zeros(output_size, dtype=np.int64)
- mask[:input_height, :input_width] = 1
- return mask
- # FIXME Amy: merge this function with the one in image_transforms.py
- def convert_to_rgb(image: ImageInput) -> ImageInput:
- """
- Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
- as is.
- Args:
- image (Image):
- The image to convert.
- """
- if not isinstance(image, PIL.Image.Image):
- return image
- # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
- # for transparent images. The call to `alpha_composite` handles this case
- if image.mode == "RGB":
- return image
- image_rgba = image.convert("RGBA")
- background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
- alpha_composite = Image.alpha_composite(background, image_rgba)
- alpha_composite = alpha_composite.convert("RGB")
- return alpha_composite
- class Idefics2ImageProcessor(BaseImageProcessor):
- r"""
- Constructs a Idefics image processor.
- Args:
- do_convert_rgb (`bool`, *optional*, defaults to `True`):
- Whether to convert the image to RGB. This is useful if the input image is of a different format e.g. RGBA.
- Only has an effect if the input image is in the PIL format.
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image. The longest edge of the image is resized to be <= `size["longest_edge"]`, with the
- shortest edge resized to keep the input aspect ratio, with a minimum size of `size["shortest_edge"]`.
- size (`Dict`, *optional*):
- Controls the size of the output image. This is a dictionary containing the keys "shortest_edge" and "longest_edge".
- resample (`Resampling`, *optional*, defaults to `Resampling.BILINEAR`):
- Resampling filter to use when resizing the image.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image. If set to `True`, the image is rescaled to have pixel values between 0 and 1.
- rescale_factor (`float`, *optional*, defaults to `1/255`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `True`):
- Whether to normalize the image. If set to `True`, the image is normalized to have a mean of `image_mean` and
- a standard deviation of `image_std`.
- image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
- Mean to use if normalizing the image. This is a float or list of floats the length of the number of
- channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
- overridden by the `image_mean` parameter in the `preprocess` method.
- image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
- Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
- number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
- Can be overridden by the `image_std` parameter in the `preprocess` method.
- do_pad (`bool`, *optional*, defaults to `True`):
- Whether or not to pad the images to the largest height and width in the batch and number of images per
- sample in the batch, such that the returned tensor is of shape (batch_size, max_num_images, num_channels, max_height, max_width).
- do_image_splitting (`bool`, *optional*, defaults to `False`):
- Whether to split the image into a sequence 4 equal sub-images concatenated with the original image. That
- strategy was first introduced in https://arxiv.org/abs/2311.06607.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_convert_rgb: bool = True,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BILINEAR,
- do_rescale: bool = True,
- rescale_factor: float = 1 / 255,
- do_normalize: bool = True,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_pad: bool = True,
- do_image_splitting: bool = False,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- self.do_convert_rgb = do_convert_rgb
- self.do_resize = do_resize
- self.size = size if size is not None else {"shortest_edge": 378, "longest_edge": 980}
- self.resample = resample
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- self.do_normalize = do_normalize
- self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
- self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
- self.do_pad = do_pad
- self.do_image_splitting = do_image_splitting
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BILINEAR,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
- resized to keep the input aspect ratio.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Size of the output image.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Resampling filter to use when resiizing the image.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- if "shortest_edge" in size and "longest_edge" in size:
- size = get_resize_output_image_size(image, size, input_data_format)
- elif "height" in size and "width" in size:
- size = (size["height"], size["width"])
- else:
- raise ValueError(
- "size must be a dictionary with keys 'shortest_edge' and 'longest_edge' or 'height' and 'width'."
- )
- return resize(
- image, size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
- )
- # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image
- def _pad_image(
- self,
- image: np.ndarray,
- output_size: Tuple[int, int],
- constant_values: Union[float, Iterable[float]] = 0,
- data_format: Optional[ChannelDimension] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Pad an image with zeros to the given size.
- """
- input_height, input_width = get_image_size(image, channel_dim=input_data_format)
- output_height, output_width = output_size
- pad_bottom = output_height - input_height
- pad_right = output_width - input_width
- padding = ((0, pad_bottom), (0, pad_right))
- padded_image = pad(
- image,
- padding,
- mode=PaddingMode.CONSTANT,
- constant_values=constant_values,
- data_format=data_format,
- input_data_format=input_data_format,
- )
- return padded_image
- def pad(
- self,
- images: List[np.ndarray],
- constant_values: Union[float, Iterable[float]] = 0,
- return_pixel_mask: bool = True,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: Optional[ChannelDimension] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> BatchFeature:
- """
- For a list of images, for each images, pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width.
- For each sample in the batch, pads the sample with empty images to the max_number of images per sample in the batch. Optionally returns a pixel mask.
- Args:
- images (`np.ndarray`):
- List of list of images to pad. Pads to the largest height and width in the batch.
- constant_values (`float` or `Iterable[float]`, *optional*):
- The value to use for the padding if `mode` is `"constant"`.
- return_pixel_mask (`bool`, *optional*, defaults to `True`):
- Whether to return a pixel mask.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- pad_size = get_max_height_width(images, input_data_format=input_data_format)
- batch_size = len(images)
- max_num_images = max(len(images_) for images_ in images)
- input_data_format = (
- infer_channel_dimension_format(images[0][0]) if input_data_format is None else input_data_format
- )
- data_format = input_data_format if data_format is None else data_format
- def empty_image(size, input_data_format):
- if input_data_format == ChannelDimension.FIRST:
- return np.zeros((3, *size), dtype=np.uint8)
- elif input_data_format == ChannelDimension.LAST:
- return np.zeros((*size, 3), dtype=np.uint8)
- raise ValueError("Invalid channel dimension format.")
- padded_images_list = [
- [empty_image(pad_size, data_format) for _ in range(max_num_images)] for _ in range(batch_size)
- ]
- padded_masks = [[np.zeros(pad_size) for _ in range(max_num_images)] for _ in range(batch_size)]
- for batch_idx in range(batch_size):
- for sample_idx, image in enumerate(images[batch_idx]):
- padded_images_list[batch_idx][sample_idx] = self._pad_image(
- image,
- pad_size,
- constant_values=constant_values,
- data_format=data_format,
- input_data_format=input_data_format,
- )
- padded_masks[batch_idx][sample_idx] = make_pixel_mask(
- image, output_size=pad_size, input_data_format=input_data_format
- )
- padded_masks = padded_masks if return_pixel_mask else None
- return padded_images_list, padded_masks
- def _crop(
- self,
- im: np.ndarray,
- w1: int,
- h1: int,
- w2: int,
- h2: int,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- if input_data_format == ChannelDimension.FIRST:
- return im[:, h1:h2, w1:w2]
- elif input_data_format == ChannelDimension.LAST:
- return im[h1:h2, w1:w2, :]
- def split_image(
- self,
- image: np.ndarray,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ):
- """
- Split an image into 4 equal sub-images, and the concatenate that sequence with the original image.
- That means that a single image becomes a sequence of 5 images.
- This is a "trick" to spend more compute on each image with no changes in the vision encoder.
- Args:
- image (`np.ndarray`):
- Images to split.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- height, width = get_image_size(image, input_data_format)
- mid_width = width // 2
- mid_height = height // 2
- return [
- self._crop(image, 0, 0, mid_width, mid_height, input_data_format),
- self._crop(image, mid_width, 0, width, mid_height, input_data_format),
- self._crop(image, 0, mid_height, mid_width, height, input_data_format),
- self._crop(image, mid_width, mid_height, width, height, input_data_format),
- image,
- ]
- def preprocess(
- self,
- images: ImageInput,
- do_convert_rgb: Optional[bool] = None,
- do_resize: Optional[bool] = None,
- size: Optional[Dict[str, int]] = None,
- resample: PILImageResampling = None,
- do_rescale: Optional[bool] = None,
- rescale_factor: Optional[float] = None,
- do_normalize: Optional[bool] = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_pad: Optional[bool] = None,
- do_image_splitting: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- input_data_format: Optional[ChannelDimension] = None,
- data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
- ):
- """
- Preprocess a batch of images.
- Args:
- images (`ImageInput`):
- A list of images to preprocess.
- do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
- Whether to convert the image to RGB.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
- the longest edge resized to keep the input aspect ratio.
- resample (`int`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
- has an effect if `do_resize` is set to `True`.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image.
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image.
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
- Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
- Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
- `True`.
- do_pad (`bool`, *optional*, defaults to `self.do_pad`):
- Whether or not to pad the images to the largest height and width in the batch.
- do_image_splitting (`bool`, *optional*, defaults to `self.do_image_splitting`):
- Whether to split the image into a sequence 4 equal sub-images concatenated with the original image. That
- strategy was first introduced in https://arxiv.org/abs/2311.06607.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - Unset: Use the channel dimension format of the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- resample = resample if resample is not None else self.resample
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- image_mean = image_mean if image_mean is not None else self.image_mean
- image_std = image_std if image_std is not None else self.image_std
- do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
- do_pad = do_pad if do_pad is not None else self.do_pad
- do_image_splitting = do_image_splitting if do_image_splitting is not None else self.do_image_splitting
- images_list = make_list_of_images(images)
- if not valid_images(images_list[0]):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- validate_preprocess_arguments(
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- if do_convert_rgb:
- images_list = [[convert_to_rgb(image) for image in images] for images in images_list]
- # All transformations expect numpy arrays.
- images_list = [[to_numpy_array(image) for image in images] for images in images_list]
- if is_scaled_image(images_list[0][0]) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images_list[0][0])
- if do_image_splitting:
- new_images_list = []
- for images in images_list:
- new_images = []
- for image in images:
- new_images.extend(self.split_image(image, input_data_format))
- new_images_list.append(new_images)
- images_list = new_images_list
- if do_resize:
- images_list = [
- [
- self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
- for image in images
- ]
- for images in images_list
- ]
- if do_rescale:
- images_list = [
- [
- self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- for image in images
- ]
- for images in images_list
- ]
- if do_normalize:
- images_list = [
- [
- self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
- for image in images
- ]
- for images in images_list
- ]
- pixel_attention_mask = None
- if do_pad:
- images_list, pixel_attention_mask = self.pad(
- images_list, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=input_data_format
- )
- if data_format is not None:
- images_list = [
- [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
- for image in images
- ]
- for images in images_list
- ]
- data = {"pixel_values": np.array(images_list) if do_pad else images_list} # Faster tensor conversion
- if pixel_attention_mask is not None:
- data["pixel_attention_mask"] = np.array(pixel_attention_mask) if do_pad else pixel_attention_mask
- return BatchFeature(data=data, tensor_type=return_tensors)
|