| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- # coding=utf-8
- # Copyright 2024 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for IDEFICS2.
- """
- from typing import TYPE_CHECKING, List, Optional, Union
- from ...feature_extraction_utils import BatchFeature
- from ...image_utils import ImageInput, is_valid_image, load_image
- from ...processing_utils import (
- ImagesKwargs,
- ProcessingKwargs,
- ProcessorMixin,
- Unpack,
- _validate_images_text_input_order,
- )
- from ...tokenization_utils_base import AddedToken, TextInput
- from ...utils import logging
- if TYPE_CHECKING:
- from ...tokenization_utils_base import PreTokenizedInput
- logger = logging.get_logger(__name__)
- def is_url(val) -> bool:
- return isinstance(val, str) and val.startswith("http")
- def is_image_or_image_url(elem):
- return is_url(elem) or is_valid_image(elem)
- class Idefics2ImagesKwargs(ImagesKwargs, total=False):
- image_seq_len: Optional[int]
- class Idefics2ProcessorKwargs(ProcessingKwargs, total=False):
- images_kwargs: Idefics2ImagesKwargs
- _defaults = {
- "text_kwargs": {
- "add_special_tokens": True,
- "padding": False,
- "is_split_into_words": False,
- },
- "images_kwargs": {},
- }
- class Idefics2Processor(ProcessorMixin):
- r"""
- Constructs a IDEFICS2 processor which wraps a LLama tokenizer and IDEFICS2 image processor into a single processor.
- [`IdeficsProcessor`] offers all the functionalities of [`Idefics2ImageProcessor`] and [`LlamaTokenizerFast`]. See
- the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information.
- Args:
- image_processor (`Idefics2ImageProcessor`):
- An instance of [`Idefics2ImageProcessor`]. The image processor is a required input.
- tokenizer (`PreTrainedTokenizerBase`, *optional*):
- An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
- image_seq_len (`int`, *optional*, defaults to 64):
- The length of the image sequence i.e. the number of <image> tokens per image in the input.
- This parameter is used to build the string from the input prompt and image tokens and should match the
- config.perceiver_config.resampler_n_latents value for the model used.
- chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
- in a chat into a tokenizable string.
- """
- attributes = ["image_processor", "tokenizer"]
- valid_kwargs = ["image_seq_len", "chat_template"]
- image_processor_class = "Idefics2ImageProcessor"
- tokenizer_class = "AutoTokenizer"
- def __init__(self, image_processor, tokenizer=None, image_seq_len: int = 64, chat_template: str = None, **kwargs):
- if image_processor is None:
- raise ValueError("You need to specify an `image_processor`.")
- if tokenizer is None:
- raise ValueError("You need to specify a `tokenizer`.")
- self.fake_image_token = AddedToken("<fake_token_around_image>", normalized=False, special=True)
- self.image_token = AddedToken("<image>", normalized=False, special=True)
- self.end_of_utterance_token = AddedToken("<end_of_utterance>", normalized=False, special=True)
- self.image_seq_len = image_seq_len
- tokens_to_add = {
- "additional_special_tokens": [self.fake_image_token, self.image_token, self.end_of_utterance_token]
- }
- tokenizer.add_special_tokens(tokens_to_add)
- super().__init__(image_processor, tokenizer, chat_template=chat_template)
- def _extract_images_from_prompts(self, prompts):
- prompt_images = []
- for prompt in prompts:
- images = []
- for elem in prompt:
- if is_valid_image(elem):
- images.append(elem)
- elif is_url(elem):
- images.append(load_image(elem))
- prompt_images.append(images)
- return prompt_images
- def __call__(
- self,
- images: Union[ImageInput, List[ImageInput], List[List[ImageInput]]] = None,
- text: Union[TextInput, "PreTokenizedInput", List[TextInput], List["PreTokenizedInput"]] = None,
- audio=None,
- videos=None,
- **kwargs: Unpack[Idefics2ProcessorKwargs],
- ) -> BatchFeature:
- """
- Processes the input prompts and returns a BatchEncoding.
- Example:
- ```python
- >>> import requests
- >>> from transformers import Idefics2Processor
- >>> from transformers.image_utils import load_image
- >>> processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", image_seq_len=2)
- >>> processor.image_processor.do_image_splitting = False # Force as False to simplify the example
- >>> url1 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
- >>> url2 = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
- >>> image1, image2 = load_image(url1), load_image(url2)
- >>> images = [[image1], [image2]]
- >>> text = [
- ... "<image>In this image, we see",
- ... "bla bla bla<image>",
- ... ]
- >>> outputs = processor(images=images, text=text, return_tensors="pt", padding=True)
- >>> input_ids = outputs.input_ids
- >>> input_tokens = processor.tokenizer.batch_decode(input_ids)
- >>> print(input_tokens)
- ['<s><fake_token_around_image><image><image><fake_token_around_image> In this image, we see', '<s> bla bla bla<fake_token_around_image><image><image><fake_token_around_image>']
- ```
- Args:
- images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
- tensor. If is of type `List[ImageInput]`, it's assumed that this is for a single prompt i.e. of batch size 1.
- text (`Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]`, *optional*):
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
- Wherever an image token, `<image>` is encountered it is expanded to
- `<fake_token_around_image>` + `<image>` * `image_seq_len` * <fake_token_around_image>`.
- return_tensors (`Union[str, TensorType]`, *optional*):
- If set, will return tensors of a particular framework. See [`PreTrainedTokenizerFast.__call__`] for more
- information.
- """
- if text is None and images is None:
- raise ValueError("You must provide either `text` or `images`.")
- # check if images and text inputs are reversed for BC
- images, text = _validate_images_text_input_order(images, text)
- output_kwargs = self._merge_kwargs(
- Idefics2ProcessorKwargs,
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
- **kwargs,
- )
- image_seq_len = output_kwargs["images_kwargs"].pop("image_seq_len", None)
- image_seq_len = image_seq_len if image_seq_len is not None else self.image_seq_len
- n_images_in_text = []
- inputs = BatchFeature()
- if text is not None:
- if isinstance(text, str):
- text = [text]
- elif not isinstance(text, list) and not isinstance(text[0], str):
- raise ValueError("Invalid input text. Please provide a string, or a list of strings")
- # Replace the image token with fake tokens around the expanded image token sequence of length `image_seq_len`
- fake_image_token = self.fake_image_token.content
- image_token = self.image_token.content
- image_str = f"{fake_image_token}{image_token * image_seq_len}{fake_image_token}"
- if self.image_processor.do_image_splitting:
- # A single image token is split into 4 patches + 1 original image
- image_str = image_str * 5
- prompt_strings = []
- for sample in text:
- n_images_in_text.append(sample.count(image_token))
- sample = sample.replace(image_token, image_str)
- # Remove any double fake tokens if images are adjacent
- sample = sample.replace(f"{fake_image_token}{fake_image_token}", f"{fake_image_token}")
- prompt_strings.append(sample)
- text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
- inputs.update(text_inputs)
- if images is not None:
- if is_image_or_image_url(images):
- images = [[images]]
- elif isinstance(images, list) and is_image_or_image_url(images[0]):
- images = [images]
- elif (
- not isinstance(images, list)
- and not isinstance(images[0], list)
- and not is_image_or_image_url(images[0][0])
- ):
- raise ValueError(
- "Invalid input images. Please provide a single image or a list of images or a list of list of images."
- )
- n_images_in_images = [len(sample) for sample in images]
- if text is not None and not n_images_in_images == n_images_in_text:
- raise ValueError(
- f"The number of images in the text {n_images_in_text} and images {n_images_in_images} should be the same."
- )
- # Load images if they are URLs
- images = [[load_image(im) for im in sample] for sample in images]
- image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
- inputs.update(image_inputs)
- return inputs
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|