| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for ImageGPT."""
- from typing import Dict, List, Optional, Union
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import rescale, resize, to_channel_dimension_format
- from ...image_utils import (
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- infer_channel_dimension_format,
- is_scaled_image,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
- if is_vision_available():
- import PIL
- logger = logging.get_logger(__name__)
- def squared_euclidean_distance(a, b):
- b = b.T
- a2 = np.sum(np.square(a), axis=1)
- b2 = np.sum(np.square(b), axis=0)
- ab = np.matmul(a, b)
- d = a2[:, None] - 2 * ab + b2[None, :]
- return d
- def color_quantize(x, clusters):
- x = x.reshape(-1, 3)
- d = squared_euclidean_distance(x, clusters)
- return np.argmin(d, axis=1)
- class ImageGPTImageProcessor(BaseImageProcessor):
- r"""
- Constructs a ImageGPT image processor. This image processor can be used to resize images to a smaller resolution
- (such as 32x32 or 64x64), normalize them and finally color quantize them to obtain sequences of "pixel values"
- (color clusters).
- Args:
- clusters (`np.ndarray` or `List[List[int]]`, *optional*):
- The color clusters to use, of shape `(n_clusters, 3)` when color quantizing. Can be overriden by `clusters`
- in `preprocess`.
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's dimensions to `(size["height"], size["width"])`. Can be overridden by
- `do_resize` in `preprocess`.
- size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
- Size of the image after resizing. Can be overridden by `size` in `preprocess`.
- resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
- Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
- do_normalize (`bool`, *optional*, defaults to `True`):
- Whether to normalize the image pixel value to between [-1, 1]. Can be overridden by `do_normalize` in
- `preprocess`.
- do_color_quantize (`bool`, *optional*, defaults to `True`):
- Whether to color quantize the image. Can be overridden by `do_color_quantize` in `preprocess`.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- # clusters is a first argument to maintain backwards compatibility with the old ImageGPTImageProcessor
- clusters: Optional[Union[List[List[int]], np.ndarray]] = None,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BILINEAR,
- do_normalize: bool = True,
- do_color_quantize: bool = True,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- size = size if size is not None else {"height": 256, "width": 256}
- size = get_size_dict(size)
- self.clusters = np.array(clusters) if clusters is not None else None
- self.do_resize = do_resize
- self.size = size
- self.resample = resample
- self.do_normalize = do_normalize
- self.do_color_quantize = do_color_quantize
- # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BILINEAR,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image to `(size["height"], size["width"])`.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
- `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
- data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the output image. If unset, the channel dimension format of the input
- image is used. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- Returns:
- `np.ndarray`: The resized image.
- """
- size = get_size_dict(size)
- if "height" not in size or "width" not in size:
- raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
- output_size = (size["height"], size["width"])
- return resize(
- image,
- size=output_size,
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- def normalize(
- self,
- image: np.ndarray,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Normalizes an images' pixel values to between [-1, 1].
- Args:
- image (`np.ndarray`):
- Image to normalize.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- image = rescale(image=image, scale=1 / 127.5, data_format=data_format, input_data_format=input_data_format)
- image = image - 1
- return image
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_normalize: bool = None,
- do_color_quantize: Optional[bool] = None,
- clusters: Optional[Union[List[List[int]], np.ndarray]] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_normalize=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the image after resizing.
- resample (`int`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
- has an effect if `do_resize` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image
- do_color_quantize (`bool`, *optional*, defaults to `self.do_color_quantize`):
- Whether to color quantize the image.
- clusters (`np.ndarray` or `List[List[int]]`, *optional*, defaults to `self.clusters`):
- Clusters used to quantize the image of shape `(n_clusters, 3)`. Only has an effect if
- `do_color_quantize` is set to `True`.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Only has an effect if `do_color_quantize` is set to `False`.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- size = get_size_dict(size)
- resample = resample if resample is not None else self.resample
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- do_color_quantize = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
- clusters = clusters if clusters is not None else self.clusters
- clusters = np.array(clusters)
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- # Here, normalize() is using a constant factor to divide pixel values.
- # hence, the method does not need iamge_mean and image_std.
- validate_preprocess_arguments(
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- if do_color_quantize and clusters is None:
- raise ValueError("Clusters must be specified if do_color_quantize is True.")
- # All transformations expect numpy arrays.
- images = [to_numpy_array(image) for image in images]
- if is_scaled_image(images[0]) and do_normalize:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If you wish to do this, "
- "make sure to set `do_normalize` to `False` and that pixel values are between [-1, 1].",
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- if do_resize:
- images = [
- self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
- for image in images
- ]
- if do_normalize:
- images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]
- if do_color_quantize:
- images = [to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format) for image in images]
- # color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
- images = np.array(images)
- images = color_quantize(images, clusters).reshape(images.shape[:-1])
- # flatten to (batch_size, height*width)
- batch_size = images.shape[0]
- images = images.reshape(batch_size, -1)
- # We need to convert back to a list of images to keep consistent behaviour across processors.
- images = list(images)
- else:
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
- for image in images
- ]
- data = {"input_ids": images}
- return BatchFeature(data=data, tensor_type=return_tensors)
|