| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165 |
- # coding=utf-8
- # Copyright 2021 The OpenAI Team Authors and HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch OpenAI ImageGPT model."""
- import math
- import os
- import warnings
- from typing import Any, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.cuda.amp import autocast
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_outputs import (
- BaseModelOutputWithPastAndCrossAttentions,
- CausalLMOutputWithCrossAttentions,
- SequenceClassifierOutputWithPast,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
- from ...utils import (
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- torch_float,
- )
- from .configuration_imagegpt import ImageGPTConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "openai/imagegpt-small"
- _CONFIG_FOR_DOC = "ImageGPTConfig"
- def load_tf_weights_in_imagegpt(model, config, imagegpt_checkpoint_path):
- """
- Load tf checkpoints in a pytorch model
- """
- try:
- import re
- import tensorflow as tf
- except ImportError:
- logger.error(
- "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
- "https://www.tensorflow.org/install/ for installation instructions."
- )
- raise
- tf_path = os.path.abspath(imagegpt_checkpoint_path)
- logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
- # Load weights from TF model
- init_vars = tf.train.list_variables(tf_path)
- names = []
- arrays = []
- for name, shape in init_vars:
- logger.info("Loading TF weight {} with shape {}".format(name, shape))
- array = tf.train.load_variable(tf_path, name)
- names.append(name)
- arrays.append(array.squeeze())
- for name, array in zip(names, arrays):
- name = name[6:] # skip "model/"
- name = name.split("/")
- # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
- # which are not required for using pretrained model
- if any(
- n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
- for n in name
- ) or name[-1] in ["_step"]:
- logger.info("Skipping {}".format("/".join(name)))
- continue
- pointer = model
- if name[-1] not in ["wtet"]:
- pointer = getattr(pointer, "transformer")
- for m_name in name:
- if re.fullmatch(r"[A-Za-z]+\d+", m_name):
- scope_names = re.split(r"(\d+)", m_name)
- else:
- scope_names = [m_name]
- if scope_names[0] == "w" or scope_names[0] == "g":
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "b":
- pointer = getattr(pointer, "bias")
- elif scope_names[0] == "wpe" or scope_names[0] == "wte":
- pointer = getattr(pointer, scope_names[0])
- pointer = getattr(pointer, "weight")
- elif scope_names[0] in ["q_proj", "k_proj", "v_proj"]:
- pointer = getattr(pointer, "c_attn")
- pointer = getattr(pointer, "weight")
- elif len(name) == 3 and name[1] == "attn" and scope_names[0] == "c_proj":
- pointer = getattr(pointer, scope_names[0])
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "wtet":
- pointer = getattr(pointer, "lm_head")
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "sos":
- pointer = getattr(pointer, "wte")
- pointer = getattr(pointer, "weight")
- else:
- pointer = getattr(pointer, scope_names[0])
- if len(scope_names) >= 2:
- num = int(scope_names[1])
- pointer = pointer[num]
- if len(name) > 1 and name[1] == "attn" or name[-1] == "wtet" or name[-1] == "sos" or name[-1] == "wte":
- pass # array is used to initialize only part of the pointer so sizes won't match
- else:
- try:
- assert pointer.shape == array.shape
- except AssertionError as e:
- e.args += (pointer.shape, array.shape)
- raise
- logger.info("Initialize PyTorch weight {}".format(name))
- if name[-1] == "q_proj":
- pointer.data[:, : config.n_embd] = torch.from_numpy(array.reshape(config.n_embd, config.n_embd)).T
- elif name[-1] == "k_proj":
- pointer.data[:, config.n_embd : 2 * config.n_embd] = torch.from_numpy(
- array.reshape(config.n_embd, config.n_embd)
- ).T
- elif name[-1] == "v_proj":
- pointer.data[:, 2 * config.n_embd :] = torch.from_numpy(array.reshape(config.n_embd, config.n_embd)).T
- elif len(name) == 3 and name[1] == "attn" and name[2] == "c_proj":
- pointer.data = torch.from_numpy(array.reshape(config.n_embd, config.n_embd))
- elif name[-1] == "wtet":
- pointer.data = torch.from_numpy(array)
- elif name[-1] == "wte":
- pointer.data[: config.vocab_size - 1, :] = torch.from_numpy(array)
- elif name[-1] == "sos":
- pointer.data[-1] = torch.from_numpy(array)
- else:
- pointer.data = torch.from_numpy(array)
- return model
- class ImageGPTLayerNorm(nn.Module):
- def __init__(self, hidden_size: Tuple[int], eps: float = 1e-5):
- super().__init__()
- self.eps = eps
- self.weight = nn.Parameter(torch.Tensor(hidden_size))
- def forward(self, tensor: torch.Tensor) -> tuple:
- # input is not mean centered
- return (
- tensor
- / torch.sqrt(torch.mean(torch.square(tensor), axis=-1, keepdim=True) + self.eps)
- * self.weight.data[..., :]
- )
- class ImageGPTAttention(nn.Module):
- def __init__(self, config, is_cross_attention: Optional[bool] = False, layer_idx: Optional[int] = None):
- super().__init__()
- max_positions = config.max_position_embeddings
- self.register_buffer(
- "bias",
- torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
- 1, 1, max_positions, max_positions
- ),
- persistent=False,
- )
- self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = self.embed_dim // self.num_heads
- self.split_size = self.embed_dim
- if self.head_dim * self.num_heads != self.embed_dim:
- raise ValueError(
- f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
- f" {self.num_heads})."
- )
- self.scale_attn_weights = config.scale_attn_weights
- self.is_cross_attention = is_cross_attention
- # Layer-wise attention scaling, reordering, and upcasting
- self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
- self.layer_idx = layer_idx
- self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
- if self.is_cross_attention:
- self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
- self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
- else:
- self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
- self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
- self.attn_dropout = nn.Dropout(config.attn_pdrop)
- self.resid_dropout = nn.Dropout(config.resid_pdrop)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
- index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
- # Prune conv1d layers
- self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
- self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
- # Update hyper params
- self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
- self.num_heads = self.num_heads - len(heads)
- self.pruned_heads = self.pruned_heads.union(heads)
- def _attn(self, query, key, value, attention_mask=None, head_mask=None):
- attn_weights = torch.matmul(query, key.transpose(-1, -2))
- if self.scale_attn_weights:
- attn_weights = attn_weights / torch_float(value.size(-1) ** 0.5)
- # Layer-wise attention scaling
- if self.scale_attn_by_inverse_layer_idx:
- attn_weights = attn_weights / float(self.layer_idx + 1)
- if not self.is_cross_attention:
- # if only "normal" attention layer implements causal mask
- query_length, key_length = query.size(-2), key.size(-2)
- causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
- mask_value = torch.finfo(attn_weights.dtype).min
- # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
- # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
- mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
- attn_weights = torch.where(causal_mask, attn_weights, mask_value)
- if attention_mask is not None:
- # Apply the attention mask
- attn_weights = attn_weights + attention_mask
- attn_weights = nn.Softmax(dim=-1)(attn_weights)
- # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
- attn_weights = attn_weights.type(value.dtype)
- attn_weights = self.attn_dropout(attn_weights)
- # Mask heads if we want to
- if head_mask is not None:
- attn_weights = attn_weights * head_mask
- attn_output = torch.matmul(attn_weights, value)
- return attn_output, attn_weights
- def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
- # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
- bsz, num_heads, q_seq_len, dk = query.size()
- _, _, k_seq_len, _ = key.size()
- # Preallocate attn_weights for `baddbmm`
- attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
- # Compute Scale Factor
- scale_factor = 1.0
- if self.scale_attn_weights:
- scale_factor /= float(value.size(-1)) ** 0.5
- if self.scale_attn_by_inverse_layer_idx:
- scale_factor /= float(self.layer_idx + 1)
- # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
- with autocast(enabled=False):
- q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
- attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
- attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
- if not self.is_cross_attention:
- # if only "normal" attention layer implements causal mask
- query_length, key_length = query.size(-2), key.size(-2)
- causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
- mask_value = torch.finfo(attn_weights.dtype).min
- # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
- # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
- mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
- attn_weights = torch.where(causal_mask, attn_weights, mask_value)
- if attention_mask is not None:
- # Apply the attention mask
- attn_weights = attn_weights + attention_mask
- attn_weights = nn.Softmax(dim=-1)(attn_weights)
- # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
- if attn_weights.dtype != torch.float32:
- raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
- attn_weights = attn_weights.type(value.dtype)
- attn_weights = self.attn_dropout(attn_weights)
- # Mask heads if we want to
- if head_mask is not None:
- attn_weights = attn_weights * head_mask
- attn_output = torch.matmul(attn_weights, value)
- return attn_output, attn_weights
- def _split_heads(self, tensor, num_heads, attn_head_size):
- """
- Splits hidden_size dim into attn_head_size and num_heads
- """
- new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
- tensor = tensor.view(*new_shape)
- return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
- def _merge_heads(self, tensor, num_heads, attn_head_size):
- """
- Merges attn_head_size dim and num_attn_heads dim into hidden_size
- """
- tensor = tensor.permute(0, 2, 1, 3).contiguous()
- new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
- return tensor.view(new_shape)
- def forward(
- self,
- hidden_states: torch.Tensor,
- layer_past: Optional[bool] = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = False,
- output_attentions: Optional[bool] = False,
- ) -> tuple:
- if encoder_hidden_states is not None:
- if not hasattr(self, "q_attn"):
- raise ValueError(
- "If class is used as cross attention, the weights `q_attn` have to be defined. "
- "Please make sure to instantiate class with `ImageGPTAttention(..., is_cross_attention=True)`."
- )
- query = self.q_attn(hidden_states)
- key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
- attention_mask = encoder_attention_mask
- else:
- query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
- query = self._split_heads(query, self.num_heads, self.head_dim)
- key = self._split_heads(key, self.num_heads, self.head_dim)
- value = self._split_heads(value, self.num_heads, self.head_dim)
- if layer_past is not None:
- past_key, past_value = layer_past
- key = torch.cat((past_key, key), dim=-2)
- value = torch.cat((past_value, value), dim=-2)
- if use_cache is True:
- present = (key, value)
- else:
- present = None
- if self.reorder_and_upcast_attn:
- attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
- else:
- attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
- attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
- attn_output = self.c_proj(attn_output)
- attn_output = self.resid_dropout(attn_output)
- outputs = (attn_output, present)
- if output_attentions:
- outputs += (attn_weights,)
- return outputs # a, present, (attentions)
- class ImageGPTMLP(nn.Module):
- def __init__(self, intermediate_size, config):
- super().__init__()
- embed_dim = config.hidden_size
- self.c_fc = Conv1D(intermediate_size, embed_dim)
- self.c_proj = Conv1D(embed_dim, intermediate_size)
- self.act = ACT2FN[config.activation_function]
- self.dropout = nn.Dropout(config.resid_pdrop)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.c_fc(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states = self.c_proj(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
- class ImageGPTBlock(nn.Module):
- def __init__(self, config, layer_idx=None):
- super().__init__()
- hidden_size = config.hidden_size
- inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
- self.ln_1 = ImageGPTLayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- self.attn = ImageGPTAttention(config, layer_idx=layer_idx)
- self.ln_2 = ImageGPTLayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- if config.add_cross_attention:
- self.crossattention = ImageGPTAttention(config, is_cross_attention=True, layer_idx=layer_idx)
- self.ln_cross_attn = ImageGPTLayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- self.mlp = ImageGPTMLP(inner_dim, config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- layer_past: Optional[bool] = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = False,
- output_attentions: Optional[bool] = False,
- ) -> tuple:
- residual = hidden_states
- hidden_states = self.ln_1(hidden_states)
- attn_outputs = self.attn(
- hidden_states,
- layer_past=layer_past,
- attention_mask=attention_mask,
- head_mask=head_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
- attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
- outputs = attn_outputs[1:]
- # residual connection
- hidden_states = attn_output + residual
- if encoder_hidden_states is not None:
- # add one self-attention block for cross-attention
- if not hasattr(self, "crossattention"):
- raise ValueError(
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
- "cross-attention layers by setting `config.add_cross_attention=True`"
- )
- residual = hidden_states
- hidden_states = self.ln_cross_attn(hidden_states)
- cross_attn_outputs = self.crossattention(
- hidden_states,
- attention_mask=attention_mask,
- head_mask=head_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- output_attentions=output_attentions,
- )
- attn_output = cross_attn_outputs[0]
- # residual connection
- hidden_states = residual + attn_output
- outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
- residual = hidden_states
- hidden_states = self.ln_2(hidden_states)
- feed_forward_hidden_states = self.mlp(hidden_states)
- # residual connection
- hidden_states = residual + feed_forward_hidden_states
- outputs = (hidden_states,) + (outputs if use_cache else outputs[1:])
- return outputs # hidden_states, present, (attentions, cross_attentions)
- class ImageGPTPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = ImageGPTConfig
- load_tf_weights = load_tf_weights_in_imagegpt
- base_model_prefix = "transformer"
- main_input_name = "input_ids"
- supports_gradient_checkpointing = True
- _no_split_modules = ["ImageGPTBlock"]
- def __init__(self, *inputs, **kwargs):
- super().__init__(*inputs, **kwargs)
- def _init_weights(self, module):
- """Initialize the weights."""
- if isinstance(module, (nn.Linear, Conv1D)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, ImageGPTLayerNorm):
- module.weight.data.fill_(1.0)
- # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
- # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
- # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
- # > -- GPT-2 :: https://openai.com/blog/better-language-models/
- #
- # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
- for name, p in module.named_parameters():
- if "c_proj" in name and "weight" in name:
- # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
- p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
- IMAGEGPT_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`ImageGPTConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- IMAGEGPT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
- `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
- sequence tokens in the vocabulary.
- If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
- `input_ids`.
- Indices can be obtained using [`AutoImageProcessor`]. See [`ImageGPTImageProcessor.__call__`] for details.
- past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
- Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
- `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
- their past given to this model should not be passed as `input_ids` as they have already been computed.
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
- `past_key_values`).
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare ImageGPT Model transformer outputting raw hidden-states without any specific head on top.",
- IMAGEGPT_START_DOCSTRING,
- )
- class ImageGPTModel(ImageGPTPreTrainedModel):
- def __init__(self, config: ImageGPTConfig):
- super().__init__(config)
- self.embed_dim = config.hidden_size
- self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
- self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
- self.drop = nn.Dropout(config.embd_pdrop)
- self.h = nn.ModuleList([ImageGPTBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
- self.ln_f = ImageGPTLayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
- # Model parallel
- self.model_parallel = False
- self.device_map = None
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.wte
- def set_input_embeddings(self, new_embeddings):
- self.wte = new_embeddings
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
- """
- for layer, heads in heads_to_prune.items():
- self.h[layer].attn.prune_heads(heads)
- @add_start_docstrings_to_model_forward(IMAGEGPT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- **kwargs: Any,
- ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoImageProcessor, ImageGPTModel
- >>> from PIL import Image
- >>> import requests
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
- >>> model = ImageGPTModel.from_pretrained("openai/imagegpt-small")
- >>> inputs = image_processor(images=image, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- ```"""
- if "pixel_values" in kwargs:
- warnings.warn(
- "The `pixel_values` argument is deprecated and will be removed in v4.47, use `input_ids` instead.",
- FutureWarning,
- )
- if input_ids is not None:
- raise ValueError(
- "You cannot pass both `pixel_values` and `input_ids`. Please make sure to only pass `input_ids`."
- )
- input_ids = kwargs.pop("pixel_values")
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- batch_size = input_ids.shape[0]
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- batch_size = inputs_embeds.shape[0]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if token_type_ids is not None:
- token_type_ids = token_type_ids.view(-1, input_shape[-1])
- if past_key_values is None:
- past_length = 0
- past_key_values = tuple([None] * len(self.h))
- else:
- past_length = past_key_values[0][0].size(-2)
- if position_ids is None:
- position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
- position_ids = position_ids.unsqueeze(0)
- # ImageGPTAttention mask.
- if attention_mask is not None:
- if batch_size <= 0:
- raise ValueError("batch_size has to be defined and > 0")
- attention_mask = attention_mask.view(batch_size, -1)
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- attention_mask = attention_mask[:, None, None, :]
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and the dtype's smallest value for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
- attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
- # If a 2D or 3D attention mask is provided for the cross-attention
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
- if self.config.add_cross_attention and encoder_hidden_states is not None:
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
- if encoder_attention_mask is None:
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
- encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
- else:
- encoder_attention_mask = None
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # head_mask has shape n_layer x batch x n_heads x N x N
- head_mask = self.get_head_mask(head_mask, self.config.n_layer)
- if inputs_embeds is None:
- inputs_embeds = self.wte(input_ids)
- position_embeds = self.wpe(position_ids)
- hidden_states = inputs_embeds + position_embeds
- if token_type_ids is not None:
- token_type_embeds = self.wte(token_type_ids)
- hidden_states = hidden_states + token_type_embeds
- hidden_states = self.drop(hidden_states)
- output_shape = input_shape + (hidden_states.size(-1),)
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- presents = () if use_cache else None
- all_self_attentions = () if output_attentions else None
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
- all_hidden_states = () if output_hidden_states else None
- for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
- # Model parallel
- if self.model_parallel:
- torch.cuda.set_device(hidden_states.device)
- # Ensure layer_past is on same device as hidden_states (might not be correct)
- if layer_past is not None:
- layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
- # Ensure that attention_mask is always on the same device as hidden_states
- if attention_mask is not None:
- attention_mask = attention_mask.to(hidden_states.device)
- if isinstance(head_mask, torch.Tensor):
- head_mask = head_mask.to(hidden_states.device)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if self.gradient_checkpointing and self.training:
- outputs = self._gradient_checkpointing_func(
- block.__call__,
- hidden_states,
- None,
- attention_mask,
- head_mask[i],
- encoder_hidden_states,
- encoder_attention_mask,
- use_cache,
- output_attentions,
- )
- else:
- outputs = block(
- hidden_states,
- layer_past=layer_past,
- attention_mask=attention_mask,
- head_mask=head_mask[i],
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
- hidden_states = outputs[0]
- if use_cache is True:
- presents = presents + (outputs[1],)
- if output_attentions:
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
- if self.config.add_cross_attention:
- all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
- # Model Parallel: If it's the last layer for that device, put things on the next device
- if self.model_parallel:
- for k, v in self.device_map.items():
- if i == v[-1] and "cuda:" + str(k) != self.last_device:
- hidden_states = hidden_states.to("cuda:" + str(k + 1))
- hidden_states = self.ln_f(hidden_states)
- hidden_states = hidden_states.view(*output_shape)
- # Add last hidden state
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(
- v
- for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=presents,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- cross_attentions=all_cross_attentions,
- )
- @add_start_docstrings(
- """
- The ImageGPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
- embeddings).
- """,
- IMAGEGPT_START_DOCSTRING,
- )
- class ImageGPTForCausalImageModeling(ImageGPTPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config: ImageGPTConfig):
- super().__init__(config)
- self.transformer = ImageGPTModel(config)
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size - 1, bias=False)
- # Model parallel
- self.model_parallel = False
- self.device_map = None
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- @add_start_docstrings_to_model_forward(IMAGEGPT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- **kwargs: Any,
- ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoImageProcessor, ImageGPTForCausalImageModeling
- >>> import torch
- >>> import matplotlib.pyplot as plt
- >>> import numpy as np
- >>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
- >>> model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small")
- >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- >>> model.to(device) # doctest: +IGNORE_RESULT
- >>> # unconditional generation of 8 images
- >>> batch_size = 4
- >>> context = torch.full((batch_size, 1), model.config.vocab_size - 1) # initialize with SOS token
- >>> context = context.to(device)
- >>> output = model.generate(
- ... input_ids=context, max_length=model.config.n_positions + 1, temperature=1.0, do_sample=True, top_k=40
- ... )
- >>> clusters = image_processor.clusters
- >>> height = image_processor.size["height"]
- >>> width = image_processor.size["width"]
- >>> samples = output[:, 1:].cpu().detach().numpy()
- >>> samples_img = [
- ... np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [height, width, 3]).astype(np.uint8) for s in samples
- ... ] # convert color cluster tokens back to pixels
- >>> f, axes = plt.subplots(1, batch_size, dpi=300)
- >>> for img, ax in zip(samples_img, axes): # doctest: +IGNORE_RESULT
- ... ax.axis("off")
- ... ax.imshow(img)
- ```"""
- if "pixel_values" in kwargs:
- warnings.warn(
- "The `pixel_values` argument is deprecated and will be removed in v4.47, use `input_ids` instead.",
- FutureWarning,
- )
- if input_ids is not None:
- raise ValueError(
- "You cannot pass both `pixel_values` and `input_ids`. Please make sure to only pass `input_ids`."
- )
- input_ids = kwargs.pop("pixel_values")
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- lm_logits = self.lm_head(hidden_states)
- loss = None
- if labels is not None:
- # Shift so that tokens < n predict n
- shift_logits = lm_logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
- if not return_dict:
- output = (lm_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return CausalLMOutputWithCrossAttentions(
- loss=loss,
- logits=lm_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- cross_attentions=transformer_outputs.cross_attentions,
- )
- @staticmethod
- def _reorder_cache(
- past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
- ) -> Tuple[Tuple[torch.Tensor]]:
- """
- This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
- [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
- beam_idx at every generation step.
- """
- return tuple(
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
- for layer_past in past_key_values
- )
- @add_start_docstrings(
- """
- The ImageGPT Model transformer with an image classification head on top (linear layer).
- [`ImageGPTForImageClassification`] average-pools the hidden states in order to do the classification.
- """,
- IMAGEGPT_START_DOCSTRING,
- )
- class ImageGPTForImageClassification(ImageGPTPreTrainedModel):
- def __init__(self, config: ImageGPTConfig):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = ImageGPTModel(config)
- self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(IMAGEGPT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- **kwargs: Any,
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoImageProcessor, ImageGPTForImageClassification
- >>> from PIL import Image
- >>> import requests
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
- >>> model = ImageGPTForImageClassification.from_pretrained("openai/imagegpt-small")
- >>> inputs = image_processor(images=image, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> logits = outputs.logits
- ```"""
- if "pixel_values" in kwargs:
- warnings.warn(
- "The `pixel_values` argument is deprecated and will be removed in v4.47, use `input_ids` instead.",
- FutureWarning,
- )
- if input_ids is not None:
- raise ValueError(
- "You cannot pass both `pixel_values` and `input_ids`. Please make sure to only pass `input_ids`."
- )
- input_ids = kwargs.pop("pixel_values")
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- # average-pool the hidden states along the sequence dimension
- pooled_hidden_states = hidden_states.mean(dim=1)
- # project from (batch_size, hidden_size) to (batch_size, num_labels)
- logits = self.score(pooled_hidden_states)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutputWithPast(
- loss=loss,
- logits=logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
|