| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """InstructBLIP model configuration"""
- import os
- from typing import Union
- from ...configuration_utils import PretrainedConfig
- from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
- from ...utils import logging
- from ..auto import CONFIG_MAPPING
- logger = logging.get_logger(__name__)
- class InstructBlipVisionConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`InstructBlipVisionModel`]. It is used to
- instantiate a InstructBLIP vision encoder according to the specified arguments, defining the model architecture.
- Instantiating a configuration defaults will yield a similar configuration to that of the InstructBLIP
- [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 1408):
- Dimensionality of the encoder layers and the pooler layer.
- intermediate_size (`int`, *optional*, defaults to 6144):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- num_hidden_layers (`int`, *optional*, defaults to 39):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 16):
- Number of attention heads for each attention layer in the Transformer encoder.
- image_size (`int`, *optional*, defaults to 224):
- The size (resolution) of each image.
- patch_size (`int`, *optional*, defaults to 14):
- The size (resolution) of each patch.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported. to 1e-5): The epsilon used by the layer
- normalization layers.
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the layer normalization layers.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- initializer_range (`float`, *optional*, defaults to 1e-10):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- qkv_bias (`bool`, *optional*, defaults to `True`):
- Whether to add a bias to the queries and values in the self-attention layers.
- Example:
- ```python
- >>> from transformers import InstructBlipVisionConfig, InstructBlipVisionModel
- >>> # Initializing a InstructBlipVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration
- >>> configuration = InstructBlipVisionConfig()
- >>> # Initializing a InstructBlipVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
- >>> model = InstructBlipVisionModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "instructblip_vision_model"
- def __init__(
- self,
- hidden_size=1408,
- intermediate_size=6144,
- num_hidden_layers=39,
- num_attention_heads=16,
- image_size=224,
- patch_size=14,
- hidden_act="gelu",
- layer_norm_eps=1e-6,
- attention_dropout=0.0,
- initializer_range=1e-10,
- qkv_bias=True,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.patch_size = patch_size
- self.image_size = image_size
- self.initializer_range = initializer_range
- self.attention_dropout = attention_dropout
- self.layer_norm_eps = layer_norm_eps
- self.hidden_act = hidden_act
- self.qkv_bias = qkv_bias
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
- # get the vision config dict if we are loading from InstructBlipConfig
- if config_dict.get("model_type") == "instructblip":
- config_dict = config_dict["vision_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class InstructBlipQFormerConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`InstructBlipQFormerModel`]. It is used to
- instantiate a InstructBLIP Querying Transformer (Q-Former) model according to the specified arguments, defining the
- model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
- the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5)
- architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.
- Read the documentation from [`PretrainedConfig`] for more information.
- Note that [`InstructBlipQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention.
- Args:
- vocab_size (`int`, *optional*, defaults to 30522):
- Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by
- the `inputs_ids` passed when calling the model.
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
- hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"silu"` and `"gelu_new"` are supported.
- hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- max_position_embeddings (`int`, *optional*, defaults to 512):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- pad_token_id (`int`, *optional*, defaults to 0):
- Token id used for padding sequences.
- position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
- Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
- positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
- [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
- For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
- with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
- cross_attention_frequency (`int`, *optional*, defaults to 2):
- The frequency of adding cross-attention to the Transformer layers.
- encoder_hidden_size (`int`, *optional*, defaults to 1408):
- The hidden size of the hidden states for cross-attention.
- Examples:
- ```python
- >>> from transformers import InstructBlipQFormerConfig, InstructBlipQFormerModel
- >>> # Initializing a InstructBLIP Salesforce/instruct-blip-flan-t5 style configuration
- >>> configuration = InstructBlipQFormerConfig()
- >>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
- >>> model = InstructBlipQFormerModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "instructblip_qformer"
- def __init__(
- self,
- vocab_size=30522,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- initializer_range=0.02,
- layer_norm_eps=1e-12,
- pad_token_id=0,
- position_embedding_type="absolute",
- cross_attention_frequency=2,
- encoder_hidden_size=1408,
- **kwargs,
- ):
- super().__init__(pad_token_id=pad_token_id, **kwargs)
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.hidden_act = hidden_act
- self.intermediate_size = intermediate_size
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- self.position_embedding_type = position_embedding_type
- self.cross_attention_frequency = cross_attention_frequency
- self.encoder_hidden_size = encoder_hidden_size
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
- # get the qformer config dict if we are loading from InstructBlipConfig
- if config_dict.get("model_type") == "instructblip":
- config_dict = config_dict["qformer_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class InstructBlipConfig(PretrainedConfig):
- r"""
- [`InstructBlipConfig`] is the configuration class to store the configuration of a
- [`InstructBlipForConditionalGeneration`]. It is used to instantiate a InstructBLIP model according to the specified
- arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with
- the defaults will yield a similar configuration to that of the InstructBLIP
- [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vision_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize [`InstructBlipVisionConfig`].
- qformer_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize [`InstructBlipQFormerConfig`].
- text_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize any [`PretrainedConfig`].
- num_query_tokens (`int`, *optional*, defaults to 32):
- The number of query tokens passed through the Transformer.
- image_token_index (`int`, *optional*):
- Token index of special image token.
- kwargs (*optional*):
- Dictionary of keyword arguments.
- Example:
- ```python
- >>> from transformers import (
- ... InstructBlipVisionConfig,
- ... InstructBlipQFormerConfig,
- ... OPTConfig,
- ... InstructBlipConfig,
- ... InstructBlipForConditionalGeneration,
- ... )
- >>> # Initializing a InstructBlipConfig with Salesforce/instruct-blip-flan-t5 style configuration
- >>> configuration = InstructBlipConfig()
- >>> # Initializing a InstructBlipForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
- >>> model = InstructBlipForConditionalGeneration(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- >>> # We can also initialize a InstructBlipConfig from a InstructBlipVisionConfig, InstructBlipQFormerConfig and any PretrainedConfig
- >>> # Initializing InstructBLIP vision, InstructBLIP Q-Former and language model configurations
- >>> vision_config = InstructBlipVisionConfig()
- >>> qformer_config = InstructBlipQFormerConfig()
- >>> text_config = OPTConfig()
- >>> config = InstructBlipConfig.from_text_vision_configs(vision_config, qformer_config, text_config)
- ```"""
- model_type = "instructblip"
- def __init__(
- self,
- vision_config=None,
- qformer_config=None,
- text_config=None,
- num_query_tokens=32,
- image_token_index=None,
- **kwargs,
- ):
- super().__init__(**kwargs)
- if vision_config is None:
- vision_config = {}
- logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.")
- if qformer_config is None:
- qformer_config = {}
- logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.")
- if text_config is None:
- text_config = {}
- logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).")
- self.vision_config = InstructBlipVisionConfig(**vision_config)
- self.qformer_config = InstructBlipQFormerConfig(**qformer_config)
- text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
- self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
- self.tie_word_embeddings = self.text_config.tie_word_embeddings
- self.is_encoder_decoder = self.text_config.is_encoder_decoder
- self.num_query_tokens = num_query_tokens
- self.image_token_index = image_token_index
- self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size
- self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
- self.initializer_factor = 1.0
- self.initializer_range = 0.02
- @classmethod
- def from_vision_qformer_text_configs(
- cls,
- vision_config: InstructBlipVisionConfig,
- qformer_config: InstructBlipQFormerConfig,
- text_config: PretrainedConfig,
- **kwargs,
- ):
- r"""
- Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and
- language model configurations.
- Returns:
- [`InstructBlipConfig`]: An instance of a configuration object
- """
- return cls(
- vision_config=vision_config.to_dict(),
- qformer_config=qformer_config.to_dict(),
- text_config=text_config.to_dict(),
- **kwargs,
- )
|