| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for InstructBLIP. Largely copy of Blip2Processor with addition of a tokenizer for the Q-Former.
- """
- import os
- from typing import List, Union
- from ...image_processing_utils import BatchFeature
- from ...image_utils import ImageInput
- from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
- from ...tokenization_utils_base import (
- AddedToken,
- BatchEncoding,
- PreTokenizedInput,
- TextInput,
- )
- from ...utils import logging
- from ..auto import AutoTokenizer
- logger = logging.get_logger(__name__)
- class InstructBlipProcessorKwargs(ProcessingKwargs, total=False):
- _defaults = {
- "text_kwargs": {
- "add_special_tokens": True,
- "padding": False,
- "stride": 0,
- "return_overflowing_tokens": False,
- "return_special_tokens_mask": False,
- "return_offsets_mapping": False,
- "return_token_type_ids": False,
- "return_length": False,
- "verbose": True,
- },
- "images_kwargs": {},
- }
- class InstructBlipProcessor(ProcessorMixin):
- r"""
- Constructs an InstructBLIP processor which wraps a BLIP image processor and a LLaMa/T5 tokenizer into a single
- processor.
- [`InstructBlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the
- docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
- Args:
- image_processor (`BlipImageProcessor`):
- An instance of [`BlipImageProcessor`]. The image processor is a required input.
- tokenizer (`AutoTokenizer`):
- An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
- qformer_tokenizer (`AutoTokenizer`):
- An instance of ['PreTrainedTokenizer`]. The Q-Former tokenizer is a required input.
- num_query_tokens (`int`, *optional*):"
- Number of tokens used by the Qformer as queries, should be same as in model's config.
- """
- attributes = ["image_processor", "tokenizer", "qformer_tokenizer"]
- valid_kwargs = ["num_query_tokens"]
- image_processor_class = "BlipImageProcessor"
- tokenizer_class = "AutoTokenizer"
- qformer_tokenizer_class = "AutoTokenizer"
- def __init__(self, image_processor, tokenizer, qformer_tokenizer, num_query_tokens=None, **kwargs):
- self.image_token = AddedToken("<image>", normalized=False, special=True)
- tokenizer.add_tokens([self.image_token], special_tokens=True)
- self.num_query_tokens = num_query_tokens
- super().__init__(image_processor, tokenizer, qformer_tokenizer)
- def __call__(
- self,
- images: ImageInput = None,
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
- audio=None,
- videos=None,
- **kwargs: Unpack[InstructBlipProcessorKwargs],
- ) -> BatchFeature:
- """
- This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
- [`BertTokenizerFast.__call__`] to prepare text for the model.
- Please refer to the docstring of the above two methods for more information.
- Args:
- images (`ImageInput`):
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
- tensor. Both channels-first and channels-last formats are supported.
- text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
- """
- if images is None and text is None:
- raise ValueError("You have to specify at least images or text.")
- output_kwargs = self._merge_kwargs(
- InstructBlipProcessorKwargs,
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
- **kwargs,
- )
- encoding = BatchFeature()
- if text is not None:
- if isinstance(text, str):
- text = [text]
- elif not isinstance(text, list) and not isinstance(text[0], str):
- raise ValueError("Invalid input text. Please provide a string, or a list of strings")
- # we have to concatenate lists - so we keep track of return_tensors here
- return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
- _text_encoding = self.tokenizer(text, **output_kwargs["text_kwargs"], return_tensors=None)
- output_kwargs["text_kwargs"]["return_tensors"] = return_tensors
- # if we know how many query tokens, expand text inside processor. We need this hacky manipulation
- # because BLIP expects image tokens to be at the beginning even before BOS token
- if self.num_query_tokens is not None and images is not None:
- text_encoding = {}
- image_tokens = self.image_token.content * self.num_query_tokens
- image_token_encoding = self.tokenizer(
- [image_tokens] * len(text), add_special_tokens=False, return_tensors=None
- )
- for k in _text_encoding:
- text_encoding[k] = [
- img_encoding + txt_encoding
- for img_encoding, txt_encoding in zip(image_token_encoding[k], _text_encoding[k])
- ]
- else:
- text_encoding = _text_encoding
- if images is not None:
- logger.warning_once(
- "Expanding inputs for image tokens in InstructBLIP should be done in processing. "
- "Please follow instruction here (https://gist.github.com/zucchini-nlp/e9f20b054fa322f84ac9311d9ab67042) to update your InstructBLIP model. "
- "Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
- )
- # cast to desired return tensors type after concatenating
- text_encoding = BatchEncoding(text_encoding, tensor_type=return_tensors)
- encoding.update(text_encoding)
- qformer_text_encoding = self.qformer_tokenizer(text, **output_kwargs["text_kwargs"])
- encoding["qformer_input_ids"] = qformer_text_encoding.pop("input_ids")
- encoding["qformer_attention_mask"] = qformer_text_encoding.pop("attention_mask")
- if images is not None:
- image_encoding = self.image_processor(images, **output_kwargs["images_kwargs"])
- encoding.update(image_encoding)
- return encoding
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
- # overwrite to save the Q-Former tokenizer in a separate folder
- def save_pretrained(self, save_directory, **kwargs):
- if os.path.isfile(save_directory):
- raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
- os.makedirs(save_directory, exist_ok=True)
- qformer_tokenizer_path = os.path.join(save_directory, "qformer_tokenizer")
- self.qformer_tokenizer.save_pretrained(qformer_tokenizer_path)
- # We modify the attributes so that only the tokenizer and image processor are saved in the main folder
- qformer_present = "qformer_tokenizer" in self.attributes
- if qformer_present:
- self.attributes.remove("qformer_tokenizer")
- outputs = super().save_pretrained(save_directory, **kwargs)
- if qformer_present:
- self.attributes += ["qformer_tokenizer"]
- return outputs
- # overwrite to load the Q-Former tokenizer from a separate folder
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
- processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
- # if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs'
- if isinstance(processor, tuple):
- processor = processor[0]
- qformer_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="qformer_tokenizer")
- processor.qformer_tokenizer = qformer_tokenizer
- return processor
|