| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for InstructBLIP. Largely copy of Blip2Processor with addition of a tokenizer for the Q-Former.
- """
- import os
- from typing import List, Optional, Union
- from ...image_processing_utils import BatchFeature
- from ...image_utils import VideoInput
- from ...processing_utils import ProcessorMixin
- from ...tokenization_utils_base import (
- AddedToken,
- BatchEncoding,
- PaddingStrategy,
- PreTokenizedInput,
- TextInput,
- TruncationStrategy,
- )
- from ...utils import TensorType, logging
- from ..auto import AutoTokenizer
- logger = logging.get_logger(__name__)
- class InstructBlipVideoProcessor(ProcessorMixin):
- r"""
- Constructs an InstructBLIPVideo processor which wraps a InstructBLIP image processor and a LLaMa/T5 tokenizer into a single
- processor.
- [`InstructBlipVideoProcessor`] offers all the functionalities of [`InstructBlipVideoImageProcessor`] and [`AutoTokenizer`]. See the
- docstring of [`~InstructBlipVideoProcessor.__call__`] and [`~InstructBlipVideoProcessor.decode`] for more information.
- Args:
- image_processor (`InstructBlipVideoImageProcessor`):
- An instance of [`InstructBlipVideoImageProcessor`]. The image processor is a required input.
- tokenizer (`AutoTokenizer`):
- An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
- qformer_tokenizer (`AutoTokenizer`):
- An instance of ['PreTrainedTokenizer`]. The Q-Former tokenizer is a required input.
- num_query_tokens (`int`, *optional*):
- Number of tokens used by the Qformer as queries, should be same as in model's config.
- """
- attributes = ["image_processor", "tokenizer", "qformer_tokenizer"]
- valid_kwargs = ["num_query_tokens"]
- image_processor_class = "InstructBlipVideoImageProcessor"
- tokenizer_class = "AutoTokenizer"
- qformer_tokenizer_class = "AutoTokenizer"
- def __init__(self, image_processor, tokenizer, qformer_tokenizer, num_query_tokens=None, **kwargs):
- self.video_token = AddedToken("<video>", normalized=False, special=True)
- tokenizer.add_tokens([self.video_token], special_tokens=True)
- self.num_query_tokens = num_query_tokens
- super().__init__(image_processor, tokenizer, qformer_tokenizer)
- def __call__(
- self,
- images: VideoInput = None,
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_token_type_ids: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- return_tensors: Optional[Union[str, TensorType]] = None,
- **kwargs,
- ) -> BatchFeature:
- """
- This method uses [`InstructBlipVideoImageProcessor.__call__`] method to prepare image(s) or video(s) for the model, and
- [`BertTokenizerFast.__call__`] to prepare text for the model.
- Please refer to the docstring of the above two methods for more information.
- """
- if images is None and text is None:
- raise ValueError("You have to specify at least one of images or text.")
- encoding = BatchFeature()
- if text is not None:
- if isinstance(text, str):
- text = [text]
- elif not isinstance(text, list) and not isinstance(text[0], str):
- raise ValueError("Invalid input text. Please provide a string, or a list of strings")
- _text_encoding = self.tokenizer(
- text=text,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_token_type_ids=return_token_type_ids,
- return_length=return_length,
- verbose=verbose,
- return_tensors=None, # required to concatenate below
- **kwargs,
- )
- # if we know how many query tokens, expand text inside processor. We need this hacky manipulation
- # because BLIP expects image tokens to be at the beginning even before BOS token
- if self.num_query_tokens is not None and images is not None:
- text_encoding = {}
- video_tokens = (
- self.video_token.content * self.num_query_tokens * 4
- ) # InstrucBLIP works with 4 frames only
- video_token_encoding = self.tokenizer(
- [video_tokens] * len(text), add_special_tokens=False, return_tensors=None
- )
- for k in _text_encoding:
- text_encoding[k] = [
- img_encoding + txt_encoding
- for img_encoding, txt_encoding in zip(video_token_encoding[k], _text_encoding[k])
- ]
- else:
- text_encoding = _text_encoding
- if images is not None:
- logger.warning_once(
- "Expanding inputs for video tokens in InstructBLIPVideo should be done in processing. "
- "Please follow instruction here (https://gist.github.com/zucchini-nlp/65f22892b054dc0d68228af56fbeaac2) to update your InstructBLIPVideo model. "
- "Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
- )
- # cast to desired return tensors type after concatenating
- text_encoding = BatchEncoding(text_encoding, tensor_type=return_tensors)
- encoding.update(text_encoding)
- qformer_text_encoding = self.qformer_tokenizer(
- text=text,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_token_type_ids=return_token_type_ids,
- return_length=return_length,
- verbose=verbose,
- return_tensors=return_tensors,
- **kwargs,
- )
- encoding["qformer_input_ids"] = qformer_text_encoding.pop("input_ids")
- encoding["qformer_attention_mask"] = qformer_text_encoding.pop("attention_mask")
- if images is not None:
- image_encoding = self.image_processor(images, return_tensors=return_tensors)
- encoding.update(image_encoding)
- return encoding
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
- # overwrite to save the Q-Former tokenizer in a separate folder
- def save_pretrained(self, save_directory, **kwargs):
- if os.path.isfile(save_directory):
- raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
- os.makedirs(save_directory, exist_ok=True)
- qformer_tokenizer_path = os.path.join(save_directory, "qformer_tokenizer")
- self.qformer_tokenizer.save_pretrained(qformer_tokenizer_path)
- # We modify the attributes so that only the tokenizer and image processor are saved in the main folder
- qformer_present = "qformer_tokenizer" in self.attributes
- if qformer_present:
- self.attributes.remove("qformer_tokenizer")
- outputs = super().save_pretrained(save_directory, **kwargs)
- if qformer_present:
- self.attributes += ["qformer_tokenizer"]
- return outputs
- # overwrite to load the Q-Former tokenizer from a separate folder
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
- processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
- # if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs'
- if isinstance(processor, tuple):
- processor = processor[0]
- qformer_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="qformer_tokenizer")
- processor.qformer_tokenizer = qformer_tokenizer
- return processor
|