| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706 |
- # coding=utf-8
- # Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch Jamba model."""
- import math
- from typing import Any, Dict, List, Optional, Tuple, Union
- import torch
- import torch.nn.functional as F
- import torch.utils.checkpoint
- from torch import nn
- from ...activations import ACT2FN
- from ...cache_utils import Cache, DynamicCache # we need __iter__ and __len__ of pkv
- from ...generation import GenerationMixin
- from ...modeling_attn_mask_utils import (
- AttentionMaskConverter,
- )
- from ...modeling_outputs import (
- MoeCausalLMOutputWithPast,
- MoeModelOutputWithPast,
- SequenceClassifierOutputWithPast,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from ...utils.import_utils import (
- is_causal_conv1d_available,
- is_flash_attn_2_available,
- is_flash_attn_greater_or_equal_2_10,
- is_mamba_ssm_available,
- )
- from .configuration_jamba import JambaConfig
- if is_flash_attn_2_available():
- from ...modeling_flash_attention_utils import _flash_attention_forward
- if is_mamba_ssm_available():
- from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
- from mamba_ssm.ops.triton.selective_state_update import selective_state_update
- else:
- selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
- if is_causal_conv1d_available():
- from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
- else:
- causal_conv1d_update, causal_conv1d_fn = None, None
- is_fast_path_available = all(
- (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
- )
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "JambaConfig"
- # Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func with gate->router
- def load_balancing_loss_func(
- router_logits: Union[torch.Tensor, Tuple[torch.Tensor], None],
- num_experts: Optional[int] = None,
- top_k=2,
- attention_mask: Optional[torch.Tensor] = None,
- ) -> Union[torch.Tensor, int]:
- r"""
- Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
- See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
- function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
- experts is too unbalanced.
- Args:
- router_logits:
- Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
- shape [batch_size X sequence_length, num_experts].
- num_experts:
- Number of experts
- top_k:
- The number of experts to route per-token, can be also interpreted as the `top-k` routing
- parameter.
- attention_mask (`torch.Tensor`, *optional*):
- The attention_mask used in forward function
- shape [batch_size X sequence_length] if not None.
- Returns:
- The auxiliary loss.
- """
- if router_logits is None or not isinstance(router_logits, tuple):
- return 0
- if isinstance(router_logits, tuple):
- compute_device = router_logits[0].device
- concatenated_router_logits = torch.cat(
- [layer_router.to(compute_device) for layer_router in router_logits], dim=0
- )
- routing_weights = torch.nn.functional.softmax(concatenated_router_logits, dim=-1)
- _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
- if attention_mask is None:
- # Compute the percentage of tokens routed to each experts
- tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
- # Compute the average probability of routing to these experts
- router_prob_per_expert = torch.mean(routing_weights, dim=0)
- else:
- batch_size, sequence_length = attention_mask.shape
- num_hidden_layers = concatenated_router_logits.shape[0] // (batch_size * sequence_length)
- # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
- expert_attention_mask = (
- attention_mask[None, :, :, None, None]
- .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
- .reshape(-1, top_k, num_experts)
- .to(compute_device)
- )
- # Compute the percentage of tokens routed to each experts
- tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
- expert_attention_mask, dim=0
- )
- # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
- router_per_expert_attention_mask = (
- attention_mask[None, :, :, None]
- .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
- .reshape(-1, num_experts)
- .to(compute_device)
- )
- # Compute the average probability of routing to these experts
- router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
- router_per_expert_attention_mask, dim=0
- )
- overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
- return overall_loss * num_experts
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Jamba
- class JambaRMSNorm(nn.Module):
- def __init__(self, hidden_size, eps=1e-6):
- """
- JambaRMSNorm is equivalent to T5LayerNorm
- """
- super().__init__()
- self.weight = nn.Parameter(torch.ones(hidden_size))
- self.variance_epsilon = eps
- def forward(self, hidden_states):
- input_dtype = hidden_states.dtype
- hidden_states = hidden_states.to(torch.float32)
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
- return self.weight * hidden_states.to(input_dtype)
- def extra_repr(self):
- return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
- """
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
- """
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
- if n_rep == 1:
- return hidden_states
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
- class HybridMambaAttentionDynamicCache(DynamicCache):
- """
- A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
- (which has a constant shape regardless of seq_len).
- This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
- and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
- For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
- while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
- For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
- while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
- and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
- """
- def __init__(self, config, batch_size, dtype=torch.float16, device=None):
- super().__init__()
- self.dtype = dtype
- self.layers_block_type = config.layers_block_type
- self.has_previous_state = False # only used by mamba
- intermediate_size = config.mamba_expand * config.hidden_size
- ssm_state_size = config.mamba_d_state
- conv_kernel_size = config.mamba_d_conv
- self.conv_states = []
- self.ssm_states = []
- self.transformer_layers = []
- for i in range(config.num_hidden_layers):
- if self.layers_block_type[i] == "mamba":
- self.conv_states += [
- torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
- ]
- self.ssm_states += [
- torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
- ]
- else:
- self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
- self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
- self.transformer_layers.append(i)
- self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
- self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
- def update(
- self,
- key_states: torch.Tensor,
- value_states: torch.Tensor,
- layer_idx: int,
- cache_kwargs: Optional[Dict[str, Any]] = None,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- # Update the cache
- if self.key_cache[layer_idx].shape[-1] == 0:
- self.key_cache[layer_idx] = key_states
- self.value_cache[layer_idx] = value_states
- else:
- self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
- self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
- return self.key_cache[layer_idx], self.value_cache[layer_idx]
- def reorder_cache(self, beam_idx: torch.LongTensor):
- """Reorders the cache for beam search, given the selected beam indices."""
- for layer_idx in range(len(self.key_cache)):
- device = self.key_cache[layer_idx].device
- self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
- device = self.value_cache[layer_idx].device
- self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
- device = self.conv_states[layer_idx].device
- self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
- device = self.ssm_states[layer_idx].device
- self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
- def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
- """Returns the sequence length of the cached states. A layer index can be optionally passed."""
- # take any layer that contains cache and not empty tensor
- layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
- if len(self.key_cache) <= layer_idx:
- return 0
- return self.key_cache[layer_idx].shape[-2]
- def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
- raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
- @classmethod
- def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
- raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
- # Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba
- class JambaAttention(nn.Module):
- """
- Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
- and "Generating Long Sequences with Sparse Transformers".
- """
- def __init__(self, config: JambaConfig, layer_idx: Optional[int] = None):
- super().__init__()
- self.config = config
- self.layer_idx = layer_idx
- if layer_idx is None:
- logger.warning_once(
- f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
- "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
- "when creating this class."
- )
- self.hidden_size = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = self.hidden_size // self.num_heads
- self.num_key_value_heads = config.num_key_value_heads
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
- self.is_causal = True
- self.attention_dropout = config.attention_dropout
- if (self.head_dim * self.num_heads) != self.hidden_size:
- raise ValueError(
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
- f" and `num_heads`: {self.num_heads})."
- )
- self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
- self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
- self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states)
- key_states = self.k_proj(hidden_states)
- value_states = self.v_proj(hidden_states)
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- if past_key_value is not None:
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
- # repeat k/v heads if n_kv_heads < n_heads
- key_states = repeat_kv(key_states, self.num_key_value_groups)
- value_states = repeat_kv(value_states, self.num_key_value_groups)
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
- if attention_mask is not None: # no matter the length, we just slice it
- causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
- attn_weights = attn_weights + causal_mask
- # upcast attention to fp32
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
- attn_output = torch.matmul(attn_weights, value_states)
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
- attn_output = self.o_proj(attn_output)
- if not output_attentions:
- attn_weights = None
- return attn_output, attn_weights, past_key_value
- # Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
- class JambaFlashAttention2(JambaAttention):
- """
- Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
- flash attention and deal with padding tokens in case the input contains any of them.
- """
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- **kwargs,
- ):
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states)
- key_states = self.k_proj(hidden_states)
- value_states = self.v_proj(hidden_states)
- # Flash attention requires the input to have the shape
- # batch_size x seq_length x head_dim x hidden_dim
- # therefore we just need to keep the original shape
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- if past_key_value is not None:
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
- # repeat k/v heads if n_kv_heads < n_heads
- key_states = repeat_kv(key_states, self.num_key_value_groups)
- value_states = repeat_kv(value_states, self.num_key_value_groups)
- dropout_rate = 0.0 if not self.training else self.attention_dropout
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
- # therefore the input hidden states gets silently casted in float32. Hence, we need
- # cast them back in float16 just to be sure everything works as expected.
- input_dtype = query_states.dtype
- if input_dtype == torch.float32:
- if torch.is_autocast_enabled():
- target_dtype = torch.get_autocast_gpu_dtype()
- # Handle the case where the model is quantized
- elif hasattr(self.config, "_pre_quantization_dtype"):
- target_dtype = self.config._pre_quantization_dtype
- else:
- target_dtype = self.q_proj.weight.dtype
- logger.warning_once(
- f"The input hidden states seems to be silently casted in float32, this might be related to"
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
- f" {target_dtype}."
- )
- query_states = query_states.to(target_dtype)
- key_states = key_states.to(target_dtype)
- value_states = value_states.to(target_dtype)
- # Reashape to the expected shape for Flash Attention
- key_states = key_states.transpose(1, 2)
- value_states = value_states.transpose(1, 2)
- attn_output = _flash_attention_forward(
- query_states,
- key_states,
- value_states,
- attention_mask,
- q_len,
- dropout=dropout_rate,
- sliding_window=getattr(self.config, "sliding_window", None),
- is_causal=self.is_causal,
- use_top_left_mask=self._flash_attn_uses_top_left_mask,
- )
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
- attn_output = self.o_proj(attn_output)
- if not output_attentions:
- attn_weights = None
- return attn_output, attn_weights, past_key_value
- # Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
- class JambaSdpaAttention(JambaAttention):
- """
- Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
- `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
- SDPA API.
- """
- # Adapted from JambaAttention.forward
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- if output_attentions:
- # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
- logger.warning_once(
- "JambaModel is using JambaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
- )
- return super().forward(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- )
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states)
- key_states = self.k_proj(hidden_states)
- value_states = self.v_proj(hidden_states)
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- if past_key_value is not None:
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
- key_states = repeat_kv(key_states, self.num_key_value_groups)
- value_states = repeat_kv(value_states, self.num_key_value_groups)
- causal_mask = attention_mask
- if attention_mask is not None:
- causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
- if query_states.device.type == "cuda" and attention_mask is not None:
- query_states = query_states.contiguous()
- key_states = key_states.contiguous()
- value_states = value_states.contiguous()
- # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
- # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
- # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
- is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False
- attn_output = torch.nn.functional.scaled_dot_product_attention(
- query_states,
- key_states,
- value_states,
- attn_mask=causal_mask,
- dropout_p=self.attention_dropout if self.training else 0.0,
- is_causal=is_causal,
- )
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.view(bsz, q_len, self.hidden_size)
- attn_output = self.o_proj(attn_output)
- return attn_output, None, past_key_value
- JAMBA_ATTENTION_CLASSES = {
- "eager": JambaAttention,
- "flash_attention_2": JambaFlashAttention2,
- "sdpa": JambaSdpaAttention,
- }
- # Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
- class JambaMambaMixer(nn.Module):
- """
- Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
- A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
- ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
- and is why Mamba is called **selective** state spaces)
- """
- def __init__(self, config: JambaConfig, layer_idx):
- super().__init__()
- self.config = config
- self.layer_idx = layer_idx
- self.hidden_size = config.hidden_size
- self.ssm_state_size = config.mamba_d_state
- self.conv_kernel_size = config.mamba_d_conv
- self.intermediate_size = config.mamba_expand * config.hidden_size
- self.time_step_rank = config.mamba_dt_rank
- self.use_conv_bias = config.mamba_conv_bias
- self.use_bias = config.mamba_proj_bias
- self.conv1d = nn.Conv1d(
- in_channels=self.intermediate_size,
- out_channels=self.intermediate_size,
- bias=self.use_conv_bias,
- kernel_size=self.conv_kernel_size,
- groups=self.intermediate_size,
- padding=self.conv_kernel_size - 1,
- )
- self.activation = config.hidden_act
- self.act = ACT2FN[config.hidden_act]
- self.use_fast_kernels = config.use_mamba_kernels
- # projection of the input hidden states
- self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias)
- # selective projection used to make dt, B and C input dependant
- self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
- # time step projection (discretization)
- self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
- # S4D real initialization. These are not discretized!
- # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
- A = torch.arange(1, self.ssm_state_size + 1)[None, :]
- A = A.expand(self.intermediate_size, -1).contiguous()
- self.A_log = nn.Parameter(torch.log(A))
- self.D = nn.Parameter(torch.ones(self.intermediate_size))
- self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
- self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps)
- self.b_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
- self.c_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
- if not is_fast_path_available:
- logger.warning_once(
- "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
- " is None. To install follow https://github.com/state-spaces/mamba/#installation and"
- " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
- )
- def cuda_kernels_forward(
- self,
- hidden_states: torch.Tensor,
- cache_params: HybridMambaAttentionDynamicCache = None,
- attention_mask: Optional[torch.LongTensor] = None,
- ):
- batch_size, seq_len, _ = hidden_states.shape
- use_precomputed_states = (
- cache_params is not None
- and cache_params.has_previous_state
- and seq_len == 1
- and cache_params.conv_states[self.layer_idx].shape[0]
- == cache_params.ssm_states[self.layer_idx].shape[0]
- == batch_size
- )
- # 1. Gated MLP's linear projection
- projected_states = self.in_proj(hidden_states).transpose(1, 2)
- # We can't use `mamba_inner_fn` even if in training and without cache params because we have the
- # inner layernorms which isn't supported by this fused kernel
- hidden_states, gate = projected_states.chunk(2, dim=1)
- if attention_mask is not None:
- hidden_states = hidden_states * attention_mask.unsqueeze(1)
- # 2. Convolution sequence transformation
- conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
- if use_precomputed_states:
- hidden_states = causal_conv1d_update(
- hidden_states.squeeze(-1),
- cache_params.conv_states[self.layer_idx],
- conv_weights,
- self.conv1d.bias,
- self.activation,
- )
- hidden_states = hidden_states.unsqueeze(-1)
- else:
- if cache_params is not None:
- conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
- cache_params.conv_states[self.layer_idx].copy_(conv_states)
- hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation)
- if attention_mask is not None:
- hidden_states = hidden_states * attention_mask.unsqueeze(1)
- # 3. State Space Model sequence transformation
- # 3.a. input varying initialization of time_step, B and C
- ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
- time_step, B, C = torch.split(
- ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
- )
- time_step = self.dt_layernorm(time_step)
- B = self.b_layernorm(B)
- C = self.c_layernorm(C)
- # Here we need to apply dt_proj without the bias, as the bias is added in the selective scan kernel.
- # This is a hack to apply dt_proj while still using the forward pass of `torch.nn.Linear`, which is needed
- # in order to make quantization work. Quantization code replaces `torch.nn.Linear` layers with quantized
- # linear layers, and requires to call the forward pass directly.
- # Quantized model can't work with the original code:
- # ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)```
- time_proj_bias = self.dt_proj.bias.data
- with torch.no_grad():
- self.dt_proj.bias.data = torch.zeros_like(self.dt_proj.bias.data)
- discrete_time_step = self.dt_proj(time_step).transpose(1, 2)
- with torch.no_grad():
- self.dt_proj.bias.data = time_proj_bias
- A = -torch.exp(self.A_log.float())
- # 3.c perform the recurrence y ← SSM(A, B, C)(x)
- time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
- if use_precomputed_states:
- scan_outputs = selective_state_update(
- cache_params.ssm_states[self.layer_idx],
- hidden_states[..., 0],
- discrete_time_step[..., 0],
- A,
- B[:, 0],
- C[:, 0],
- self.D,
- gate[..., 0],
- time_proj_bias,
- dt_softplus=True,
- ).unsqueeze(-1)
- else:
- scan_outputs, ssm_state = selective_scan_fn(
- hidden_states,
- discrete_time_step,
- A,
- B.transpose(1, 2),
- C.transpose(1, 2),
- self.D.float(),
- gate,
- time_proj_bias,
- delta_softplus=True,
- return_last_state=True,
- )
- if ssm_state is not None and cache_params is not None:
- cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
- # 4. Final linear projection
- contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
- return contextualized_states
- # fmt: off
- def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCache = None, attention_mask: Optional[torch.LongTensor] = None):
- batch_size, seq_len, _ = input_states.shape
- dtype = input_states.dtype
- # 1. Gated MLP's linear projection
- projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
- hidden_states, gate = projected_states.chunk(2, dim=1)
- if attention_mask is not None:
- hidden_states = hidden_states * attention_mask.unsqueeze(1)
- use_cache = isinstance(cache_params, HybridMambaAttentionDynamicCache)
- # 2. Convolution sequence transformation
- if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size:
- if self.training:
- # In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
- ssm_state = cache_params.ssm_states[self.layer_idx].clone()
- else:
- ssm_state = cache_params.ssm_states[self.layer_idx]
- ssm_state = ssm_state.to(hidden_states.device)
- if cache_params.has_previous_state and seq_len == 1 and \
- cache_params.conv_states[self.layer_idx].shape[0] == batch_size:
- conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
- conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
- conv_state[:, :, -1] = hidden_states[:, :, 0]
- cache_params.conv_states[self.layer_idx] = conv_state
- hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
- if self.use_conv_bias:
- hidden_states += self.conv1d.bias
- hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
- else:
- conv_state = nn.functional.pad(
- hidden_states,
- (self.conv_kernel_size - hidden_states.shape[-1], 0)
- )
- cache_params.conv_states[self.layer_idx] = conv_state
- hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
- else:
- ssm_state = torch.zeros(
- (batch_size, self.intermediate_size, self.ssm_state_size),
- device=hidden_states.device, dtype=dtype
- )
- hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
- if attention_mask is not None:
- hidden_states = hidden_states * attention_mask.unsqueeze(1)
- # 3. State Space Model sequence transformation
- # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
- ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
- time_step, B, C = torch.split(
- ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
- )
- time_step = self.dt_layernorm(time_step)
- B = self.b_layernorm(B)
- C = self.c_layernorm(C)
- discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
- discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
- # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
- A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
- discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
- discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediate_size, seq_len, ssm_state_size]
- deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
- # 3.c perform the recurrence y ← SSM(A, B, C)(x)
- scan_outputs = []
- for i in range(seq_len):
- ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediate_size, ssm_state]
- scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediate_size, 1]
- scan_outputs.append(scan_output[:, :, 0])
- scan_output = torch.stack(scan_outputs, dim=-1) # [batch, intermediate_size, seq_len]
- scan_output = scan_output + (hidden_states * self.D[None, :, None])
- scan_output = (scan_output * self.act(gate))
- if use_cache:
- cache_params.ssm_states[self.layer_idx] = ssm_state
- # 4. Final linear projection
- contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
- return contextualized_states
- # fmt: on
- def forward(
- self,
- hidden_states,
- cache_params: HybridMambaAttentionDynamicCache = None,
- attention_mask: Optional[torch.LongTensor] = None,
- ):
- if self.use_fast_kernels:
- if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
- raise ValueError(
- "Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device"
- )
- return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask)
- return self.slow_forward(hidden_states, cache_params, attention_mask)
- # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Jamba
- class JambaMLP(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.hidden_size = config.hidden_size
- self.intermediate_size = config.intermediate_size
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
- self.act_fn = ACT2FN[config.hidden_act]
- def forward(self, hidden_state):
- return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
- # Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->Jamba
- class JambaSparseMoeBlock(nn.Module):
- """
- This implementation is
- strictly equivalent to standard MoE with full capacity (no
- dropped tokens). It's faster since it formulates MoE operations
- in terms of block-sparse operations to accomodate imbalanced
- assignments of tokens to experts, whereas standard MoE either
- (1) drop tokens at the cost of reduced performance or (2) set
- capacity factor to number of experts and thus waste computation
- and memory on padding.
- """
- def __init__(self, config: JambaConfig):
- super().__init__()
- self.hidden_dim = config.hidden_size
- self.ffn_dim = config.intermediate_size
- self.num_experts = config.num_experts
- self.top_k = config.num_experts_per_tok
- self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
- self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)])
- def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
- """ """
- batch_size, sequence_length, hidden_dim = hidden_states.shape
- hidden_states = hidden_states.view(-1, hidden_dim)
- # router_logits: (batch * sequence_length, n_experts)
- router_logits = self.router(hidden_states)
- routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
- routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
- # we cast back to the input dtype
- routing_weights = routing_weights.to(hidden_states.dtype)
- final_hidden_states = torch.zeros(
- (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
- )
- # One hot encode the selected experts to create an expert mask
- # this will be used to easily index which expert is going to be sollicitated
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
- # Loop over all available experts in the model and perform the computation on each expert
- for expert_idx in range(self.num_experts):
- expert_layer = self.experts[expert_idx]
- idx, top_x = torch.where(expert_mask[expert_idx])
- if top_x.shape[0] == 0:
- continue
- # Index the correct hidden states and compute the expert hidden state for
- # the current expert. We need to make sure to multiply the output hidden
- # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
- current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
- current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
- # However `index_add_` only support torch tensors for indexing so we'll use
- # the `top_x` tensor here.
- final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
- final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
- return final_hidden_states, router_logits
- class JambaAttentionDecoderLayer(nn.Module):
- def __init__(self, config: JambaConfig, layer_idx: int):
- super().__init__()
- num_experts = config.layers_num_experts[layer_idx]
- self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
- ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
- self.feed_forward = ffn_layer_class(config)
- self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
- output_attentions: Optional[bool] = False,
- output_router_logits: Optional[bool] = False,
- use_cache: Optional[bool] = False,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
- `(batch, sequence_length)` where padding elements are indicated by 0.
- past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_router_logits (`bool`, *optional*):
- Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
- should not be returned during inference.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
- (see `past_key_values`).
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
- Indices depicting the position of the input sequence tokens in the sequence.
- """
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- cache_position=cache_position,
- )
- # residual connection after attention
- hidden_states = residual + hidden_states
- # feed-forward (experts/MLP)
- residual = hidden_states
- hidden_states = self.pre_ff_layernorm(hidden_states)
- ff_outputs = self.feed_forward(hidden_states)
- if isinstance(ff_outputs, tuple):
- hidden_states, router_logits = ff_outputs
- else:
- hidden_states, router_logits = ff_outputs, None
- hidden_states = residual + hidden_states
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (self_attn_weights,)
- if use_cache:
- outputs += (present_key_value,)
- if output_router_logits:
- outputs += (router_logits,)
- return outputs
- class JambaMambaDecoderLayer(nn.Module):
- def __init__(self, config: JambaConfig, layer_idx: int):
- super().__init__()
- num_experts = config.layers_num_experts[layer_idx]
- self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx)
- ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
- self.feed_forward = ffn_layer_class(config)
- self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
- output_attentions: Optional[bool] = False,
- output_router_logits: Optional[bool] = False,
- use_cache: Optional[bool] = False,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
- `(batch, sequence_length)` where padding elements are indicated by 0.
- past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_router_logits (`bool`, *optional*):
- Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
- should not be returned during inference.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
- (see `past_key_values`).
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
- Indices depicting the position of the input sequence tokens in the sequence.
- """
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- hidden_states = self.mamba(
- hidden_states=hidden_states,
- cache_params=past_key_value,
- attention_mask=attention_mask,
- )
- self_attn_weights = None
- # residual connection after mamba
- hidden_states = residual + hidden_states
- # feed-forward (experts/MLP)
- residual = hidden_states
- hidden_states = self.pre_ff_layernorm(hidden_states)
- ff_outputs = self.feed_forward(hidden_states)
- if isinstance(ff_outputs, tuple):
- hidden_states, router_logits = ff_outputs
- else:
- hidden_states, router_logits = ff_outputs, None
- hidden_states = residual + hidden_states
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (self_attn_weights,)
- if use_cache:
- outputs += (past_key_value,)
- if output_router_logits:
- outputs += (router_logits,)
- return outputs
- JAMBA_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`JambaConfig`]):
- Model configuration class with all the parameters of the model. Initializing with a config file does not
- load the weights associated with the model, only the configuration. Check out the
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- @add_start_docstrings(
- "The bare Jamba Model outputting raw hidden-states without any specific head on top.",
- JAMBA_START_DOCSTRING,
- )
- class JambaPreTrainedModel(PreTrainedModel):
- config_class = JambaConfig
- base_model_prefix = "model"
- supports_gradient_checkpointing = True
- _no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"]
- _skip_keys_device_placement = "past_key_values"
- _supports_flash_attn_2 = True
- _supports_sdpa = True
- _supports_cache_class = True # Note: only supports HybridMambaAttentionDynamicCache
- _is_stateful = True
- def _init_weights(self, module):
- std = self.config.initializer_range
- if isinstance(module, (nn.Linear, nn.Conv1d)):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- JAMBA_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
- `past_key_values`).
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
- information on the default strategy.
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.n_positions - 1]`.
- [What are position IDs?](../glossary#position-ids)
- past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
- self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
- `past_key_values` input) to speed up sequential decoding.
- Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
- Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
- `(batch_size, d_inner, d_state)` respectively.
- See the `HybridMambaAttentionDynamicCache` class for more details.
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- output_router_logits (`bool`, *optional*):
- Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
- should not be returned during inference.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
- Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
- this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
- the complete sequence length.
- """
- ALL_DECODER_LAYER_TYPES = {"attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer}
- @add_start_docstrings(
- "The bare Jamba Model outputting raw hidden-states without any specific head on top.",
- JAMBA_START_DOCSTRING,
- )
- # Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->Jamba
- class JambaModel(JambaPreTrainedModel):
- """
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JambaDecoderLayer`]
- Args:
- config: JambaConfig
- """
- def __init__(self, config: JambaConfig):
- super().__init__(config)
- self.padding_idx = config.pad_token_id
- self.vocab_size = config.vocab_size
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
- decoder_layers = []
- for i in range(config.num_hidden_layers):
- layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]]
- decoder_layers.append(layer_class(config, layer_idx=i))
- self.layers = nn.ModuleList(decoder_layers)
- self._attn_implementation = config._attn_implementation
- self.final_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embed_tokens
- def set_input_embeddings(self, value):
- self.embed_tokens = value
- @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- output_router_logits: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple, MoeModelOutputWithPast]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_router_logits = (
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
- )
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if (input_ids is None) ^ (inputs_embeds is not None):
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
- if self.gradient_checkpointing and self.training and use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
- )
- use_cache = False
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input_ids)
- hidden_states = inputs_embeds
- if use_cache and past_key_values is None:
- logger.warning_once(
- "Jamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
- "provided, so no cache will be returned."
- )
- if cache_position is None:
- cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
- if position_ids is None:
- position_ids = cache_position.unsqueeze(0)
- causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
- mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
- all_hidden_states = () if output_hidden_states else None
- all_self_attns = () if output_attentions else None
- all_router_logits = () if output_router_logits else None
- for decoder_layer in self.layers:
- # Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
- layer_mask = mamba_mask if isinstance(decoder_layer, JambaMambaDecoderLayer) else causal_mask
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- decoder_layer.__call__,
- hidden_states,
- layer_mask,
- position_ids,
- past_key_values,
- output_attentions,
- output_router_logits,
- use_cache,
- cache_position,
- )
- else:
- layer_outputs = decoder_layer(
- hidden_states,
- attention_mask=layer_mask,
- position_ids=position_ids,
- past_key_value=past_key_values,
- output_attentions=output_attentions,
- output_router_logits=output_router_logits,
- use_cache=use_cache,
- cache_position=cache_position,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- if layer_outputs[1] is not None:
- # append attentions only of attention layers. Mamba layers return `None` as the attention weights
- all_self_attns += (layer_outputs[1],)
- if output_router_logits:
- if layer_outputs[-1] is not None:
- # append router logits only of expert layers. Regular MLP layers return `None` as the router logits
- all_router_logits += (layer_outputs[-1],)
- hidden_states = self.final_layernorm(hidden_states)
- # add hidden states from the last decoder layer
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if past_key_values and not past_key_values.has_previous_state:
- past_key_values.has_previous_state = True
- next_cache = None if not use_cache else past_key_values
- if not return_dict:
- return tuple(
- v
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
- if v is not None
- )
- return MoeModelOutputWithPast(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- router_logits=all_router_logits,
- )
- def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
- if self.config._attn_implementation == "flash_attention_2":
- if attention_mask is not None and 0.0 in attention_mask:
- return attention_mask
- return None
- dtype, device = input_tensor.dtype, input_tensor.device
- min_dtype = torch.finfo(dtype).min
- sequence_length = input_tensor.shape[1]
- target_length = cache_position[-1] + 1
- causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
- if sequence_length != 1:
- causal_mask = torch.triu(causal_mask, diagonal=1)
- causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
- causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
- if attention_mask is not None:
- causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
- if attention_mask.dim() == 2:
- mask_length = attention_mask.shape[-1]
- padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
- causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
- if (
- self.config._attn_implementation == "sdpa"
- and attention_mask is not None
- and attention_mask.device.type == "cuda"
- ):
- # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
- # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
- # Details: https://github.com/pytorch/pytorch/issues/110213
- causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
- return causal_mask
- def _update_mamba_mask(self, attention_mask, cache_position):
- """
- No need for zeroing states when
- 1. Cached forward
- 2. Attending to all inputs
- """
- mamba_mask = attention_mask
- if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
- mamba_mask = None
- return mamba_mask
- # Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba
- class JambaForCausalLM(JambaPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config: JambaConfig):
- super().__init__(config)
- self.model = JambaModel(config)
- self.vocab_size = config.vocab_size
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- self.router_aux_loss_coef = config.router_aux_loss_coef
- self.num_experts = config.num_experts
- self.num_experts_per_tok = config.num_experts_per_tok
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.model.embed_tokens
- def set_input_embeddings(self, value):
- self.model.embed_tokens = value
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- def set_decoder(self, decoder):
- self.model = decoder
- def get_decoder(self):
- return self.model
- @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
- # Ignore copy
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- output_router_logits: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- num_logits_to_keep: Optional[Union[int, None]] = None,
- **loss_kwargs,
- ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
- r"""
- Args:
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
- num_logits_to_keep (`int` or `None`, *optional*):
- Calculate logits for the last `num_logits_to_keep` tokens. If `None`, calculate logits for all
- `input_ids`. Only last token logits are needed for generation, and calculating them only for that token
- can save memory, which becomes pretty significant for long sequences.
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, JambaForCausalLM
- >>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
- >>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
- >>> inputs = tokenizer(prompt, return_tensors="pt")
- >>> # Generate
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_router_logits = (
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
- )
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
- outputs = self.model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- output_router_logits=output_router_logits,
- cache_position=cache_position,
- return_dict=return_dict,
- )
- hidden_states = outputs[0]
- if num_logits_to_keep is None:
- logits = self.lm_head(hidden_states)
- else:
- logits = self.lm_head(hidden_states[..., -num_logits_to_keep:, :])
- loss = None
- if labels is not None:
- loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
- aux_loss = None
- if output_router_logits:
- aux_loss = load_balancing_loss_func(
- outputs.router_logits if return_dict else outputs[-1],
- self.num_experts,
- self.num_experts_per_tok,
- attention_mask,
- )
- if labels is not None:
- loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
- if not return_dict:
- output = (logits,) + outputs[1:]
- if output_router_logits:
- output = (aux_loss,) + output
- return (loss,) + output if loss is not None else output
- return MoeCausalLMOutputWithPast(
- loss=loss,
- aux_loss=aux_loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- router_logits=outputs.router_logits,
- )
- def prepare_inputs_for_generation(
- self,
- input_ids,
- past_key_values=None,
- attention_mask=None,
- inputs_embeds=None,
- output_router_logits=False,
- cache_position=None,
- position_ids=None,
- use_cache=True,
- **kwargs,
- ):
- # Overwitten -- has a unique cache type, `HybridMambaAttentionDynamicCache`
- empty_past_kv = past_key_values is None
- # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
- # Exception 1: when passing input_embeds, input_ids may be missing entries
- # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
- if not empty_past_kv:
- if inputs_embeds is not None: # Exception 1
- input_ids = input_ids[:, -cache_position.shape[0] :]
- elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
- input_ids = input_ids[:, cache_position]
- else:
- past_key_values = HybridMambaAttentionDynamicCache(
- self.config, input_ids.shape[0], self.dtype, device=self.device
- )
- if attention_mask is not None and position_ids is None:
- # create position_ids on the fly for batch generation
- position_ids = attention_mask.long().cumsum(-1) - 1
- position_ids.masked_fill_(attention_mask == 0, 1)
- if not empty_past_kv:
- position_ids = position_ids[:, -input_ids.shape[1] :]
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
- if inputs_embeds is not None and empty_past_kv:
- model_inputs = {"inputs_embeds": inputs_embeds}
- else:
- model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
- model_inputs.update(
- {
- "position_ids": position_ids,
- "past_key_values": past_key_values,
- "use_cache": use_cache,
- "attention_mask": attention_mask,
- "output_router_logits": output_router_logits,
- "num_logits_to_keep": self.config.num_logits_to_keep,
- "cache_position": cache_position,
- }
- )
- return model_inputs
- @add_start_docstrings(
- """
- The Jamba Model with a sequence classification head on top (linear layer).
- [`JambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
- (e.g. GPT-2) do.
- Since it does classification on the last token, it requires to know the position of the last token. If a
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
- each row of the batch).
- """,
- JAMBA_START_DOCSTRING,
- )
- # Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification with Mixtral->Jamba, MIXTRAL->JAMBA
- class JambaForSequenceClassification(JambaPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.model = JambaModel(config)
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.model.embed_tokens
- def set_input_embeddings(self, value):
- self.model.embed_tokens = value
- @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.model(
- input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- logits = self.score(hidden_states)
- if input_ids is not None:
- batch_size = input_ids.shape[0]
- else:
- batch_size = inputs_embeds.shape[0]
- if self.config.pad_token_id is None and batch_size != 1:
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
- if self.config.pad_token_id is None:
- sequence_lengths = -1
- else:
- if input_ids is not None:
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
- sequence_lengths = sequence_lengths.to(logits.device)
- else:
- sequence_lengths = -1
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
- loss = None
- if labels is not None:
- loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
- if not return_dict:
- output = (pooled_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutputWithPast(
- loss=loss,
- logits=pooled_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
|