| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692 |
- # coding=utf-8
- # Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Processor class for KOSMOS-2."""
- import copy
- import math
- import re
- from typing import List, Optional, Tuple, Union
- from ...image_processing_utils import BatchFeature
- from ...image_utils import ImageInput, is_batched
- from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack
- from ...tokenization_utils import AddedToken
- from ...tokenization_utils_base import BatchEncoding, TextInput
- BboxInput = Union[
- List[Tuple[int, int]],
- List[Tuple[float, float, float, float]],
- List[List[Tuple[int, int]]],
- List[List[Tuple[float, float, float]]],
- ]
- class Kosmos2ImagesKwargs(ImagesKwargs, total=False):
- bboxes: Optional[List[float]]
- num_image_tokens: Optional[int]
- first_image_token_id: Optional[int]
- class Kosmos2TextKwargs(TextKwargs, total=False):
- add_eos_token: Optional[bool]
- class Kosmos2ProcessorKwargs(ProcessingKwargs, total=False):
- text_kwargs: Kosmos2TextKwargs
- images_kwargs: Kosmos2ImagesKwargs
- _defaults = {
- "text_kwargs": {
- "add_special_tokens": True,
- "padding": False,
- "stride": 0,
- "return_overflowing_tokens": False,
- "return_special_tokens_mask": False,
- "return_offsets_mapping": False,
- "return_token_type_ids": False,
- "verbose": True,
- "add_eos_token": False,
- },
- "images_kwargs": {
- "num_image_tokens": 64,
- },
- }
- class Kosmos2Processor(ProcessorMixin):
- r"""
- Constructs an KOSMOS-2 processor which wraps a KOSMOS-2 image processor and a KOSMOS-2 tokenizer into a single
- processor.
- [`Kosmos2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and some functionalities of
- [`XLMRobertaTokenizerFast`]. See the docstring of [`~Kosmos2Processor.__call__`] and [`~Kosmos2Processor.decode`]
- for more information.
- Args:
- image_processor (`CLIPImageProcessor`):
- An instance of [`CLIPImageProcessor`]. The image processor is a required input.
- tokenizer (`XLMRobertaTokenizerFast`):
- An instance of ['XLMRobertaTokenizerFast`]. The tokenizer is a required input.
- num_patch_index_tokens (`int`, *optional*, defaults to 1024):
- The number of tokens that represent patch indices.
- """
- attributes = ["image_processor", "tokenizer"]
- valid_kwargs = ["num_patch_index_tokens"]
- image_processor_class = "CLIPImageProcessor"
- tokenizer_class = "AutoTokenizer"
- def __init__(self, image_processor, tokenizer, num_patch_index_tokens=1024, *kwargs):
- tokenizer.return_token_type_ids = False
- self.eod_token = "</doc>"
- self.boi_token = "<image>"
- self.eoi_token = "</image>"
- self.eoc_token = "</chunk>"
- self.eol_token = "</line>"
- self.bop_token = "<phrase>"
- self.eop_token = "</phrase>"
- self.boo_token = "<object>"
- self.eoo_token = "</object>"
- self.dom_token = "</delimiter_of_multi_objects/>"
- self.grd_token = "<grounding>"
- self.tag_tokens = [
- self.eod_token,
- self.boi_token,
- self.eoi_token,
- self.eoc_token,
- self.eol_token,
- self.bop_token,
- self.eop_token,
- self.boo_token,
- self.eoo_token,
- self.dom_token,
- self.grd_token,
- ]
- self.num_patch_index_tokens = num_patch_index_tokens
- patch_index_tokens = [f"<patch_index_{str(x).zfill(4)}>" for x in range(self.num_patch_index_tokens)]
- tokens_to_add = []
- for token in self.tag_tokens + patch_index_tokens:
- tokens_to_add.append(AddedToken(token, lstrip=True, rstrip=False, normalized=False))
- tokenizer.add_tokens(tokens_to_add)
- super().__init__(image_processor, tokenizer)
- def __call__(
- self,
- images: ImageInput = None,
- text: Union[TextInput, List[TextInput]] = None,
- audio=None,
- videos=None,
- **kwargs: Unpack[Kosmos2ProcessorKwargs],
- ) -> BatchFeature:
- """
- This method uses [`CLIPImageProcessor.__call__`] method to prepare image(s) for the model, and
- [`XLMRobertaTokenizerFast.__call__`] to prepare text for the model.
- Please refer to the docstring of the above two methods for more information.
- The rest of this documentation shows the arguments specific to `Kosmos2Processor`.
- Args:
- bboxes (`Union[List[Tuple[int]], List[Tuple[float]], List[List[Tuple[int]]], List[List[Tuple[float]]]]`, *optional*):
- The bounding bboxes associated to `texts`.
- num_image_tokens (`int`, *optional* defaults to 64):
- The number of (consecutive) places that are used to mark the placeholders to store image information.
- This should be the same as `latent_query_num` in the instance of `Kosmos2Config` you are using.
- first_image_token_id (`int`, *optional*):
- The token id that will be used for the first place of the subsequence that is reserved to store image
- information. If unset, will default to `self.tokenizer.unk_token_id + 1`.
- add_eos_token (`bool`, defaults to `False`):
- Whether or not to include `EOS` token id in the encoding when `add_special_tokens=True`.
- """
- if images is None and text is None:
- raise ValueError("You have to specify either images or text.")
- output_kwargs = self._merge_kwargs(
- Kosmos2ProcessorKwargs,
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
- **kwargs,
- )
- bboxes = output_kwargs["images_kwargs"].pop("bboxes", None)
- num_image_tokens = output_kwargs["images_kwargs"].pop("num_image_tokens", 64)
- first_image_token_id = output_kwargs["images_kwargs"].pop("first_image_token_id", None)
- add_eos_token = output_kwargs["text_kwargs"].pop("add_eos_token", False)
- add_special_tokens = output_kwargs["text_kwargs"]["add_special_tokens"]
- padding = output_kwargs["text_kwargs"]["padding"]
- return_tensors = output_kwargs["text_kwargs"].setdefault("return_tensors", None)
- encoding = BatchFeature()
- if images is not None:
- image_encoding = self.image_processor(images, **output_kwargs["images_kwargs"])
- encoding.update(image_encoding)
- if text is not None:
- text = self.preprocess_examples(text, images, bboxes, num_image_tokens=num_image_tokens)
- if add_special_tokens and not add_eos_token:
- if isinstance(text, str):
- text = f"{self.tokenizer.bos_token}{text}"
- elif isinstance(text, list):
- text = [f"{self.tokenizer.bos_token}{s}" for s in text]
- output_kwargs["text_kwargs"]["add_special_tokens"] = (
- output_kwargs["text_kwargs"]["add_special_tokens"] and add_eos_token
- )
- output_kwargs["text_kwargs"]["padding"] = padding if images is None else False
- output_kwargs["text_kwargs"]["return_tensors"] = return_tensors if images is None else None
- text_encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
- encoding.update(text_encoding)
- output_kwargs["text_kwargs"]["add_special_tokens"] = add_special_tokens
- output_kwargs["text_kwargs"]["padding"] = padding
- output_kwargs["text_kwargs"]["return_tensors"] = return_tensors
- if text is not None and images is not None:
- # Use the id of the first token after <unk>
- if first_image_token_id is None:
- first_image_token_id = self.tokenizer.unk_token_id + 1
- # To see if we need one more `0` (for `<s>`) at the beginning of `image_embeds_position_mask`.
- with_bos = add_special_tokens
- # The first (actual) `<image>` token is always at the 1st or 2nd place (after `<s>` if any). Here we look
- # for the second `<image>` token (which indicate the first image token).
- start_index = int(with_bos) + 1
- # Add `image_embeds_position_mask`: the leading and trailing `0` are for `boi` and `eoi` tokens. The `1` indicates
- # the places of image tokens.
- image_token_ids = list(range(first_image_token_id, first_image_token_id + num_image_tokens))
- base_image_embeds_position_mask = [0] + [1] * num_image_tokens + [0]
- # loop over `encoding["input_ids"]`
- input_ids = []
- image_embeds_position_mask = []
- all_input_ids = encoding["input_ids"]
- # not batched -> (changed to) batch of size 1
- if isinstance(text, str):
- all_input_ids = [all_input_ids]
- encoding["attention_mask"] = [encoding["attention_mask"]]
- for text_ids in all_input_ids:
- # change the ids for the fake `<image>` tokens in `input_ids`
- text_ids = text_ids[:start_index] + image_token_ids + text_ids[start_index + num_image_tokens :]
- input_ids.append(text_ids)
- mask = copy.copy(base_image_embeds_position_mask)
- if with_bos:
- # for `<s>`
- mask = [0] + mask
- # trailing part (which are not related to the image)
- mask += [0] * (len(text_ids) - len(mask))
- image_embeds_position_mask.append(mask)
- if isinstance(text, list):
- sorted_length = sorted(
- [(idx, len(x)) for idx, x in enumerate(text_encoding.input_ids)], key=lambda x: x[-1]
- )
- _, min_len_not_padded = sorted_length[0]
- idx, _ = sorted_length[-1]
- output_kwargs["text_kwargs"]["add_special_tokens"] = (
- output_kwargs["text_kwargs"]["add_special_tokens"] and add_eos_token
- )
- output_kwargs["text_kwargs"]["return_tensors"] = None
- text_encoding = self.tokenizer(text=[text[idx]], **output_kwargs["text_kwargs"])
- max_len_padded = len(text_encoding.input_ids[0])
- if min_len_not_padded != max_len_padded:
- if self.tokenizer.padding_side == "right":
- input_ids = [x + [self.tokenizer.pad_token_id] * (max_len_padded - len(x)) for x in input_ids]
- image_embeds_position_mask = [
- x + [0] * (max_len_padded - len(x)) for x in image_embeds_position_mask
- ]
- encoding["attention_mask"] = [
- x + [0] * (max_len_padded - len(x)) for x in encoding["attention_mask"]
- ]
- elif self.tokenizer.padding_side == "left":
- input_ids = [[self.tokenizer.pad_token_id] * (max_len_padded - len(x)) + x for x in input_ids]
- image_embeds_position_mask = [
- [0] * (max_len_padded - len(x)) + x for x in image_embeds_position_mask
- ]
- encoding["attention_mask"] = [
- [0] * (max_len_padded - len(x)) + x for x in encoding["attention_mask"]
- ]
- # un-batch if necessary
- if isinstance(text, str) and return_tensors is None:
- input_ids = input_ids[0]
- encoding["attention_mask"] = encoding["attention_mask"][0]
- image_embeds_position_mask = image_embeds_position_mask[0]
- # update (with the target tensor type if specified)
- encoding.update(
- BatchEncoding(
- data={
- "input_ids": input_ids,
- "attention_mask": encoding["attention_mask"],
- "image_embeds_position_mask": image_embeds_position_mask,
- },
- tensor_type=return_tensors,
- )
- )
- return encoding
- def _check_bboxes_for_single_text(self, bboxes):
- """
- Check `bboxes` for a single text example. It could be
- - `None`: no bounding box associated to a text.
- - A list with each element being the bounding boxes associated to one `<phrase> ... </phrase>` pair found
- in a text. This could be:
- - `None`: no bounding box associated to a `<phrase> ... </phrase>` pair.
- - A tuple of 2 integers: A single bounding box specified by patch indices.
- - A tuple of 4 float point number: A single bounding box specified by (normalized) coordinates.
- - A list containing the above 2 tuple types: Multiple bounding boxes for a
- `<phrase> ... </phrase>` pair.
- """
- if bboxes is None:
- return
- elif not isinstance(bboxes, list):
- raise ValueError("`bboxes` (for a single text example) should be `None` or a list.")
- # `bbox` is the bounding boxes for a single <phrase> </phrase> pair
- for bbox in bboxes:
- if bbox is None:
- continue
- elif not isinstance(bbox, list):
- bbox = [bbox]
- for element in bbox:
- if not isinstance(element, tuple) or not (
- (len(element) == 2 and all(isinstance(x, int) for x in element))
- or (len(element) == 4 and all(isinstance(x, float) for x in element))
- ):
- raise ValueError(
- "Each element in `bboxes` (for a single text example) should be either `None`, a tuple containing "
- "2 integers or 4 float point numbers, or a list containing such tuples. Also "
- "make sure the arguments `texts` and `bboxes` passed to `preprocess_text` are both in "
- "batches or both for a single example."
- )
- def _preprocess_single_example(self, text, image, bboxes, img_info_tokens):
- text = text.strip()
- if image is not None:
- # Add `<image> ... (fake) image tokens ... </image>`
- text = f"{img_info_tokens} {text}"
- # Add `<object> <patch_idx_xxxx> <patch_idx_yyy> </object>` after `<phrase> phrase text </phrase>`
- text = self._insert_patch_index_tokens(text, bboxes)
- return text
- def preprocess_examples(
- self,
- texts: Union[TextInput, List[TextInput]],
- images: ImageInput = None,
- bboxes: BboxInput = None,
- num_image_tokens: Optional[int] = 64,
- ) -> Union[str, List[str]]:
- """Add image and bounding box information to `texts` as image and patch index tokens.
- Args:
- texts (`Union[TextInput, List[TextInput]]`): The texts to be processed.
- images (`ImageInput`, *optional*): The images associated to `texts`.
- bboxes (`Union[List[Tuple[int]], List[Tuple[float]], List[List[Tuple[int]]], List[List[Tuple[float]]]]`, *optional*):
- The bounding bboxes associated to `texts`.
- num_image_tokens (`int`, *optional*, defaults to 64):
- The number of image tokens (used as latent queries). This should corresponds to the `latent_query_num`
- attribute in `Kosmos2Config`.
- Returns:
- `Union[TextInput, List[TextInput]]`: The processed texts with image and patch index tokens.
- """
- # These are fake `<image>` tokens enclosed between (the actual) `<image>` token and `</image>`.
- img_tokens = [self.boi_token] * num_image_tokens
- img_info_tokens = " ".join([self.boi_token] + img_tokens + [self.eoi_token])
- # make batch to simplify processing logic
- batched = True
- if isinstance(texts, str):
- batched = False
- texts = [texts]
- if images is None:
- images = [None] * len(texts)
- elif not is_batched(images):
- images = [images]
- if len(texts) != len(images):
- raise ValueError(
- f"The number of examples in `texts` and `images` should be the same. Got {len(texts)} v.s. {len(images)} instead."
- )
- if not batched:
- self._check_bboxes_for_single_text(bboxes)
- bboxes = [bboxes]
- elif bboxes is not None:
- if not isinstance(bboxes, list):
- raise ValueError("`bboxes` should be `None` or a list (as a batch) when `texts` is passed as a batch.")
- for x in bboxes:
- self._check_bboxes_for_single_text(x)
- else:
- bboxes = [None] * len(texts)
- if len(bboxes) != len(texts):
- raise ValueError(
- f"The number of examples in `texts` and `bboxes` should be the same. Got {len(texts)} v.s. {len(bboxes)} instead."
- )
- result = [
- self._preprocess_single_example(text, image, bbox, img_info_tokens)
- for text, image, bbox in zip(texts, images, bboxes)
- ]
- # un-batch if necessary
- if not batched:
- result = result[0]
- return result
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- def post_process_generation(self, text, cleanup_and_extract=True):
- caption = text.split(self.eoi_token)[-1]
- if cleanup_and_extract:
- return clean_text_and_extract_entities_with_bboxes(caption)
- return caption
- @property
- # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
- def _insert_patch_index_tokens(self, text: str, bboxes: Union[List[Tuple[int]], List[Tuple[float]]]) -> str:
- if bboxes is None or len(bboxes) == 0:
- return text
- matched_phrases = list(re.finditer(r"<phrase>.+?</phrase>", string=text))
- if len(matched_phrases) != len(bboxes):
- raise ValueError(
- f"The number of elements in `bboxes` should be the same as the number of `<phrase> ... </phrase>` pairs in `text`. Got {len(matched_phrases)} v.s. {len(bboxes)} instead."
- )
- # insert object's patch index tokens
- # the found `<phrase> ... </phrase>` pairs.
- curr_pos = 0
- buffer = []
- for matched, bbox in zip(matched_phrases, bboxes):
- _, end = matched.span()
- buffer.append(text[curr_pos:end])
- curr_pos = end
- # A phrase without bbox
- if bbox is None:
- continue
- # A phrase with a single bbox
- if isinstance(bbox, tuple):
- bbox = [bbox]
- patch_index_strings = []
- # A phrase could have multiple bboxes
- if not all(box is not None for box in bbox):
- raise ValueError(
- "The multiple bounding boxes for a single phrase should not contain any `None` value."
- )
- for box in bbox:
- patch_index_1, patch_index_2 = self._convert_bbox_to_patch_index_tokens(box)
- patch_index_strings.append(f"{patch_index_1} {patch_index_2}")
- # `bbox` being an empty list
- if len(patch_index_strings) == 0:
- continue
- position_str = " </delimiter_of_multi_objects/> ".join(patch_index_strings)
- buffer.append(f"<object> {position_str} </object>")
- # remaining
- if curr_pos < len(text):
- buffer.append(text[curr_pos:])
- text = "".join(buffer)
- return text
- def _convert_bbox_to_patch_index_tokens(
- self, bbox: Union[Tuple[int, int], Tuple[float, float, float, float]]
- ) -> Tuple[str, str]:
- # already computed patch indices
- if len(bbox) == 2:
- idx_1, idx_2 = bbox
- # bbox specified with (normalized) coordinates
- else:
- # use `self.tokenizer` to get `num_patches_per_side`
- num_patches_per_side = int(math.sqrt(self.num_patch_index_tokens))
- idx_1, idx_2 = coordinate_to_patch_index(bbox, num_patches_per_side)
- token_1 = f"<patch_index_{str(idx_1).zfill(4)}>"
- token_2 = f"<patch_index_{str(idx_2).zfill(4)}>"
- return token_1, token_2
- def coordinate_to_patch_index(bbox: Tuple[float, float, float, float], num_patches_per_side: int) -> Tuple[int, int]:
- """Convert a bounding box to a pair of patch indices.
- Args:
- bbox (`Tuple[float, float, float, float]`):
- The 4 coordinates of the bounding box, with the format being (x1, y1, x2, y2) specifying the upper-left and
- lower-right corners of the box. It should have x2 > x1 and y2 > y1.
- num_patches_per_side (`int`): the number of patches along each side.
- Returns:
- `Tuple[int, int]`: A pair of patch indices representing the upper-left patch and lower-right patch.
- """
- (x1, y1, x2, y2) = bbox
- if not (x2 > x1 and y2 > y1):
- raise ValueError("The coordinates in `bbox` should be `(x1, y1, x2, y2)` with `x2 > x1` and `y2 > y1`.")
- ul_x = math.floor(x1 * num_patches_per_side)
- ul_y = math.floor(y1 * num_patches_per_side)
- lr_x = math.ceil(x2 * num_patches_per_side - 1)
- lr_y = math.ceil(y2 * num_patches_per_side - 1)
- ul_idx = ul_y * num_patches_per_side + ul_x
- lr_idx = lr_y * num_patches_per_side + lr_x
- return ul_idx, lr_idx
- # copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L35C1-L75C38
- # (with format modifications)
- def patch_index_to_coordinate(ul_idx: int, lr_idx: int, num_patches_per_side: int):
- """
- Given a grid of length `num_patches_per_side` and the indices of the upper-left and lower-right corners of a
- bounding box, returns the normalized coordinates of the bounding box, in the form (x1, y1, x2, y2).
- Args:
- ul_idx (`int`): the index of the grid cell that corresponds to the upper-left corner of the bounding box.
- lr_idx (`int`): the index of the grid cell that corresponds to the lower-right corner of the bounding box.
- num_patches_per_side (`int`): the number of patches along each side.
- Returns:
- `Tuple[float]`: the normalized coordinates of the bounding box, in the form (x1, y1, x2, y2).
- """
- # Compute the size of each cell in the grid
- cell_size = 1.0 / num_patches_per_side
- # Compute the x and y indices of the upper-left and lower-right corners of the bounding box
- ul_x = ul_idx % num_patches_per_side
- ul_y = ul_idx // num_patches_per_side
- lr_x = lr_idx % num_patches_per_side
- lr_y = lr_idx // num_patches_per_side
- # Compute the normalized coordinates of the bounding box
- if ul_idx == lr_idx:
- x1 = ul_x * cell_size
- y1 = ul_y * cell_size
- x2 = lr_x * cell_size + cell_size
- y2 = lr_y * cell_size + cell_size
- elif ul_x == lr_x or ul_y == lr_y:
- x1 = ul_x * cell_size
- y1 = ul_y * cell_size
- x2 = lr_x * cell_size + cell_size
- y2 = lr_y * cell_size + cell_size
- else:
- x1 = ul_x * cell_size + cell_size / 2
- y1 = ul_y * cell_size + cell_size / 2
- x2 = lr_x * cell_size + cell_size / 2
- y2 = lr_y * cell_size + cell_size / 2
- return x1, y1, x2, y2
- # copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L4-L33
- # (with format modifications)
- def extract_entities_with_patch_indices(text):
- """Extract entities contained in `text`. The bounding bboxes is given in the form of patch indices.
- This functioin is only intended to be used within `clean_text_and_extract_entities_with_bboxes` where further
- processing happens, including converting to normalized coordinates and whitespace character cleaning up.
- Examples:
- ```python
- >>> text = "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>."
- >>> entities = extract_entities_with_patch_indices(text)
- >>> entities
- [(' a snowman', (31, 41), [(44, 863)]), (' a fire', (130, 137), [(5, 911)])]
- ```"""
- # The regular expression pattern for matching the required formats
- pattern = r"(?:(<phrase>([^<]+)</phrase>))?<object>((?:<patch_index_\d+><patch_index_\d+></delimiter_of_multi_objects/>)*<patch_index_\d+><patch_index_\d+>)</object>"
- # Find all matches in the given string
- matches = re.finditer(pattern, text)
- # Initialize an empty list to store the valid patch_index combinations
- entities_with_patch_indices = []
- for match in matches:
- # span of a `phrase` that is between <phrase> and </phrase>
- span = match.span(2)
- phrase_tag, phrase, match_content = match.groups()
- if not phrase_tag:
- phrase = None
- # We take the starting position of `<object>`
- span = (match.span(0)[0], match.span(0)[0])
- # Split the match_content by the delimiter to get individual patch_index pairs
- patch_index_pairs = match_content.split("</delimiter_of_multi_objects/>")
- entity_bboxes = []
- for pair in patch_index_pairs:
- # Extract the xxxx and yyyy values from the patch_index pair
- x = re.search(r"<patch_index_(\d+)>", pair)
- y = re.search(r"<patch_index_(\d+)>", pair[1:])
- if x and y:
- if phrase:
- entity_bboxes.append((int(x.group(1)), int(y.group(1))))
- else:
- entity_bboxes.append((int(x.group(1)), int(y.group(1))))
- if phrase:
- entities_with_patch_indices.append((phrase, span, entity_bboxes))
- else:
- for bbox in entity_bboxes:
- # fake entity name
- entity = f"<patch_index_{bbox[0]}><patch_index_{bbox[1]}>"
- entities_with_patch_indices.append((entity, span, [bbox]))
- return entities_with_patch_indices
- def adjust_entity_positions(entity, text):
- """Adjust the positions of the entities in `text` to be relative to the text with special fields removed."""
- entity_name, (start, end) = entity
- # computed the length of strings with special fields (tag tokens, patch index tokens, etc.) removed
- adjusted_start = len(re.sub("<.*?>", "", text[:start]))
- adjusted_end = len(re.sub("<.*?>", "", text[:end]))
- adjusted_entity = (entity_name, (adjusted_start, adjusted_end))
- return adjusted_entity
- def _cleanup_spaces(text, entities):
- """Remove the spaces around the text and the entities in it."""
- new_text = text.strip()
- leading_spaces = len(text) - len(text.lstrip())
- new_entities = []
- for entity_name, (start, end), bboxes in entities:
- entity_name_leading_spaces = len(entity_name) - len(entity_name.lstrip())
- entity_name_trailing_spaces = len(entity_name) - len(entity_name.rstrip())
- start = start - leading_spaces + entity_name_leading_spaces
- end = end - leading_spaces - entity_name_trailing_spaces
- entity_name = entity_name.strip()
- new_entities.append((entity_name, (start, end), bboxes))
- return new_text, new_entities
- # copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L77-L87
- # (with format modifications)
- def clean_text_and_extract_entities_with_bboxes(text, num_patches_per_side=32):
- """Remove the tag tokens from `text`, extract entities in it with some cleaning up of white characters.
- Examples:
- ```python
- >>> text = "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>."
- >>> clean_text, entities = clean_text_and_extract_entities_with_bboxes(text)
- >>> clean_text
- 'An image of a snowman warming himself by a fire.'
- >>> entities
- [('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]
- ```"""
- # remove special fields (tag tokens, patch index tokens, etc.)
- processed_text = re.sub("<.*?>", "", text)
- entities_with_patch_indices = extract_entities_with_patch_indices(text)
- entities = []
- for item in entities_with_patch_indices:
- entity, bboxes = item[0:2], item[2]
- adjusted_entity = adjust_entity_positions(entity, text)
- bboxes_in_coords = [patch_index_to_coordinate(bbox[0], bbox[1], num_patches_per_side) for bbox in bboxes]
- entities.append(adjusted_entity + (bboxes_in_coords,))
- return _cleanup_spaces(processed_text, entities)
|