| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375 |
- # coding=utf-8
- # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch LayoutLM model."""
- import math
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutputWithPastAndCrossAttentions,
- BaseModelOutputWithPoolingAndCrossAttentions,
- MaskedLMOutput,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
- from .configuration_layoutlm import LayoutLMConfig
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "LayoutLMConfig"
- _CHECKPOINT_FOR_DOC = "microsoft/layoutlm-base-uncased"
- LayoutLMLayerNorm = nn.LayerNorm
- class LayoutLMEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings."""
- def __init__(self, config):
- super(LayoutLMEmbeddings, self).__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
- self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
- self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
- self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
- self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
- self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- def forward(
- self,
- input_ids=None,
- bbox=None,
- token_type_ids=None,
- position_ids=None,
- inputs_embeds=None,
- ):
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- words_embeddings = inputs_embeds
- position_embeddings = self.position_embeddings(position_ids)
- try:
- left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
- upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
- right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
- lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
- except IndexError as e:
- raise IndexError("The `bbox`coordinate values should be within 0-1000 range.") from e
- h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
- w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings = (
- words_embeddings
- + position_embeddings
- + left_position_embeddings
- + upper_position_embeddings
- + right_position_embeddings
- + lower_position_embeddings
- + h_position_embeddings
- + w_position_embeddings
- + token_type_embeddings
- )
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->LayoutLM
- class LayoutLMSelfAttention(nn.Module):
- def __init__(self, config, position_embedding_type=None):
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads})"
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- self.position_embedding_type = position_embedding_type or getattr(
- config, "position_embedding_type", "absolute"
- )
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- self.max_position_embeddings = config.max_position_embeddings
- self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
- self.is_decoder = config.is_decoder
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- mixed_query_layer = self.query(hidden_states)
- # If this is instantiated as a cross-attention module, the keys
- # and values come from an encoder; the attention mask needs to be
- # such that the encoder's padding tokens are not attended to.
- is_cross_attention = encoder_hidden_states is not None
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_layer = past_key_value[0]
- value_layer = past_key_value[1]
- attention_mask = encoder_attention_mask
- elif is_cross_attention:
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
- attention_mask = encoder_attention_mask
- elif past_key_value is not None:
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
- else:
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- query_layer = self.transpose_for_scores(mixed_query_layer)
- use_cache = past_key_value is not None
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_layer, value_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- query_length, key_length = query_layer.shape[2], key_layer.shape[2]
- if use_cache:
- position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
- -1, 1
- )
- else:
- position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
- position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
- distance = position_ids_l - position_ids_r
- positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
- positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
- if self.position_embedding_type == "relative_key":
- relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores
- elif self.position_embedding_type == "relative_key_query":
- relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in LayoutLMModel forward() function)
- attention_scores = attention_scores + attention_mask
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- if self.is_decoder:
- outputs = outputs + (past_key_value,)
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->LayoutLM
- class LayoutLMSelfOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- LAYOUTLM_SELF_ATTENTION_CLASSES = {
- "eager": LayoutLMSelfAttention,
- }
- # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->LayoutLM,BERT->LAYOUTLM
- class LayoutLMAttention(nn.Module):
- def __init__(self, config, position_embedding_type=None):
- super().__init__()
- self.self = LAYOUTLM_SELF_ATTENTION_CLASSES[config._attn_implementation](
- config, position_embedding_type=position_embedding_type
- )
- self.output = LayoutLMSelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.self.query = prune_linear_layer(self.self.query, index)
- self.self.key = prune_linear_layer(self.self.key, index)
- self.self.value = prune_linear_layer(self.self.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- self_outputs = self.self(
- hidden_states,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertIntermediate
- class LayoutLMIntermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM
- class LayoutLMOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->LayoutLM
- class LayoutLMLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = LayoutLMAttention(config)
- self.is_decoder = config.is_decoder
- self.add_cross_attention = config.add_cross_attention
- if self.add_cross_attention:
- if not self.is_decoder:
- raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
- self.crossattention = LayoutLMAttention(config, position_embedding_type="absolute")
- self.intermediate = LayoutLMIntermediate(config)
- self.output = LayoutLMOutput(config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- self_attention_outputs = self.attention(
- hidden_states,
- attention_mask,
- head_mask,
- output_attentions=output_attentions,
- past_key_value=self_attn_past_key_value,
- )
- attention_output = self_attention_outputs[0]
- # if decoder, the last output is tuple of self-attn cache
- if self.is_decoder:
- outputs = self_attention_outputs[1:-1]
- present_key_value = self_attention_outputs[-1]
- else:
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- cross_attn_present_key_value = None
- if self.is_decoder and encoder_hidden_states is not None:
- if not hasattr(self, "crossattention"):
- raise ValueError(
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
- " by setting `config.add_cross_attention=True`"
- )
- # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
- cross_attention_outputs = self.crossattention(
- attention_output,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- cross_attn_past_key_value,
- output_attentions,
- )
- attention_output = cross_attention_outputs[0]
- outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
- # add cross-attn cache to positions 3,4 of present_key_value tuple
- cross_attn_present_key_value = cross_attention_outputs[-1]
- present_key_value = present_key_value + cross_attn_present_key_value
- layer_output = apply_chunking_to_forward(
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
- )
- outputs = (layer_output,) + outputs
- # if decoder, return the attn key/values as the last output
- if self.is_decoder:
- outputs = outputs + (present_key_value,)
- return outputs
- def feed_forward_chunk(self, attention_output):
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
- # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->LayoutLM
- class LayoutLMEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.layer = nn.ModuleList([LayoutLMLayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = False,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- next_decoder_cache = () if use_cache else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- past_key_value = past_key_values[i] if past_key_values is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- else:
- layer_outputs = layer_module(
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache += (layer_outputs[-1],)
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if self.config.add_cross_attention:
- all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(
- v
- for v in [
- hidden_states,
- next_decoder_cache,
- all_hidden_states,
- all_self_attentions,
- all_cross_attentions,
- ]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_decoder_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- cross_attentions=all_cross_attentions,
- )
- # Copied from transformers.models.bert.modeling_bert.BertPooler
- class LayoutLMPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->LayoutLM
- class LayoutLMPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- if isinstance(config.hidden_act, str):
- self.transform_act_fn = ACT2FN[config.hidden_act]
- else:
- self.transform_act_fn = config.hidden_act
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->LayoutLM
- class LayoutLMLMPredictionHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.transform = LayoutLMPredictionHeadTransform(config)
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
- self.decoder.bias = self.bias
- def _tie_weights(self):
- self.decoder.bias = self.bias
- def forward(self, hidden_states):
- hidden_states = self.transform(hidden_states)
- hidden_states = self.decoder(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->LayoutLM
- class LayoutLMOnlyMLMHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.predictions = LayoutLMLMPredictionHead(config)
- def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
- prediction_scores = self.predictions(sequence_output)
- return prediction_scores
- class LayoutLMPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = LayoutLMConfig
- base_model_prefix = "layoutlm"
- supports_gradient_checkpointing = True
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, nn.Linear):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, LayoutLMLayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- LAYOUTLM_START_DOCSTRING = r"""
- The LayoutLM model was proposed in [LayoutLM: Pre-training of Text and Layout for Document Image
- Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei and
- Ming Zhou.
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
- it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`LayoutLMConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- LAYOUTLM_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*):
- Bounding boxes of each input sequence tokens. Selected in the range `[0,
- config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
- format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
- y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for
- tokens that are NOT MASKED, `0` for MASKED tokens.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`: `0` corresponds to a *sentence A* token, `1` corresponds to a *sentence B* token
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1`
- indicates the head is **not masked**, `0` indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- If set to `True`, the hidden states of all layers are returned. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- If set to `True`, the model will return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare LayoutLM Model transformer outputting raw hidden-states without any specific head on top.",
- LAYOUTLM_START_DOCSTRING,
- )
- class LayoutLMModel(LayoutLMPreTrainedModel):
- def __init__(self, config):
- super(LayoutLMModel, self).__init__(config)
- self.config = config
- self.embeddings = LayoutLMEmbeddings(config)
- self.encoder = LayoutLMEncoder(config)
- self.pooler = LayoutLMPooler(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.embeddings.word_embeddings = value
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, LayoutLMModel
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
- >>> model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased")
- >>> words = ["Hello", "world"]
- >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
- >>> token_boxes = []
- >>> for word, box in zip(words, normalized_word_boxes):
- ... word_tokens = tokenizer.tokenize(word)
- ... token_boxes.extend([box] * len(word_tokens))
- >>> # add bounding boxes of cls + sep tokens
- >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
- >>> encoding = tokenizer(" ".join(words), return_tensors="pt")
- >>> input_ids = encoding["input_ids"]
- >>> attention_mask = encoding["attention_mask"]
- >>> token_type_ids = encoding["token_type_ids"]
- >>> bbox = torch.tensor([token_boxes])
- >>> outputs = model(
- ... input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids
- ... )
- >>> last_hidden_states = outputs.last_hidden_state
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=device)
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- if bbox is None:
- bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device)
- extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
- extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
- extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
- if head_mask is not None:
- if head_mask.dim() == 1:
- head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
- head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
- elif head_mask.dim() == 2:
- head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
- head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
- else:
- head_mask = [None] * self.config.num_hidden_layers
- embedding_output = self.embeddings(
- input_ids=input_ids,
- bbox=bbox,
- position_ids=position_ids,
- token_type_ids=token_type_ids,
- inputs_embeds=inputs_embeds,
- )
- encoder_outputs = self.encoder(
- embedding_output,
- extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(sequence_output)
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndCrossAttentions(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- cross_attentions=encoder_outputs.cross_attentions,
- )
- @add_start_docstrings("""LayoutLM Model with a `language modeling` head on top.""", LAYOUTLM_START_DOCSTRING)
- class LayoutLMForMaskedLM(LayoutLMPreTrainedModel):
- _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
- def __init__(self, config):
- super().__init__(config)
- self.layoutlm = LayoutLMModel(config)
- self.cls = LayoutLMOnlyMLMHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.layoutlm.embeddings.word_embeddings
- def get_output_embeddings(self):
- return self.cls.predictions.decoder
- def set_output_embeddings(self, new_embeddings):
- self.cls.predictions.decoder = new_embeddings
- self.cls.predictions.bias = new_embeddings.bias
- @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, MaskedLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, LayoutLMForMaskedLM
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
- >>> model = LayoutLMForMaskedLM.from_pretrained("microsoft/layoutlm-base-uncased")
- >>> words = ["Hello", "[MASK]"]
- >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
- >>> token_boxes = []
- >>> for word, box in zip(words, normalized_word_boxes):
- ... word_tokens = tokenizer.tokenize(word)
- ... token_boxes.extend([box] * len(word_tokens))
- >>> # add bounding boxes of cls + sep tokens
- >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
- >>> encoding = tokenizer(" ".join(words), return_tensors="pt")
- >>> input_ids = encoding["input_ids"]
- >>> attention_mask = encoding["attention_mask"]
- >>> token_type_ids = encoding["token_type_ids"]
- >>> bbox = torch.tensor([token_boxes])
- >>> labels = tokenizer("Hello world", return_tensors="pt")["input_ids"]
- >>> outputs = model(
- ... input_ids=input_ids,
- ... bbox=bbox,
- ... attention_mask=attention_mask,
- ... token_type_ids=token_type_ids,
- ... labels=labels,
- ... )
- >>> loss = outputs.loss
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.layoutlm(
- input_ids,
- bbox,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- prediction_scores = self.cls(sequence_output)
- masked_lm_loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- masked_lm_loss = loss_fct(
- prediction_scores.view(-1, self.config.vocab_size),
- labels.view(-1),
- )
- if not return_dict:
- output = (prediction_scores,) + outputs[2:]
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
- return MaskedLMOutput(
- loss=masked_lm_loss,
- logits=prediction_scores,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- LayoutLM Model with a sequence classification head on top (a linear layer on top of the pooled output) e.g. for
- document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset.
- """,
- LAYOUTLM_START_DOCSTRING,
- )
- class LayoutLMForSequenceClassification(LayoutLMPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.layoutlm = LayoutLMModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.layoutlm.embeddings.word_embeddings
- @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, LayoutLMForSequenceClassification
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
- >>> model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased")
- >>> words = ["Hello", "world"]
- >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
- >>> token_boxes = []
- >>> for word, box in zip(words, normalized_word_boxes):
- ... word_tokens = tokenizer.tokenize(word)
- ... token_boxes.extend([box] * len(word_tokens))
- >>> # add bounding boxes of cls + sep tokens
- >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
- >>> encoding = tokenizer(" ".join(words), return_tensors="pt")
- >>> input_ids = encoding["input_ids"]
- >>> attention_mask = encoding["attention_mask"]
- >>> token_type_ids = encoding["token_type_ids"]
- >>> bbox = torch.tensor([token_boxes])
- >>> sequence_label = torch.tensor([1])
- >>> outputs = model(
- ... input_ids=input_ids,
- ... bbox=bbox,
- ... attention_mask=attention_mask,
- ... token_type_ids=token_type_ids,
- ... labels=sequence_label,
- ... )
- >>> loss = outputs.loss
- >>> logits = outputs.logits
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.layoutlm(
- input_ids=input_ids,
- bbox=bbox,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- sequence labeling (information extraction) tasks such as the [FUNSD](https://guillaumejaume.github.io/FUNSD/)
- dataset and the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset.
- """,
- LAYOUTLM_START_DOCSTRING,
- )
- class LayoutLMForTokenClassification(LayoutLMPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.layoutlm = LayoutLMModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.layoutlm.embeddings.word_embeddings
- @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, LayoutLMForTokenClassification
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
- >>> model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased")
- >>> words = ["Hello", "world"]
- >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
- >>> token_boxes = []
- >>> for word, box in zip(words, normalized_word_boxes):
- ... word_tokens = tokenizer.tokenize(word)
- ... token_boxes.extend([box] * len(word_tokens))
- >>> # add bounding boxes of cls + sep tokens
- >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
- >>> encoding = tokenizer(" ".join(words), return_tensors="pt")
- >>> input_ids = encoding["input_ids"]
- >>> attention_mask = encoding["attention_mask"]
- >>> token_type_ids = encoding["token_type_ids"]
- >>> bbox = torch.tensor([token_boxes])
- >>> token_labels = torch.tensor([1, 1, 0, 0]).unsqueeze(0) # batch size of 1
- >>> outputs = model(
- ... input_ids=input_ids,
- ... bbox=bbox,
- ... attention_mask=attention_mask,
- ... token_type_ids=token_type_ids,
- ... labels=token_labels,
- ... )
- >>> loss = outputs.loss
- >>> logits = outputs.logits
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.layoutlm(
- input_ids=input_ids,
- bbox=bbox,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- LayoutLM Model with a span classification head on top for extractive question-answering tasks such as
- [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the final hidden-states output to compute `span
- start logits` and `span end logits`).
- """,
- LAYOUTLM_START_DOCSTRING,
- )
- class LayoutLMForQuestionAnswering(LayoutLMPreTrainedModel):
- def __init__(self, config, has_visual_segment_embedding=True):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.layoutlm = LayoutLMModel(config)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.layoutlm.embeddings.word_embeddings
- @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- Returns:
- Example:
- In the example below, we prepare a question + context pair for the LayoutLM model. It will give us a prediction
- of what it thinks the answer is (the span of the answer within the texts parsed from the image).
- ```python
- >>> from transformers import AutoTokenizer, LayoutLMForQuestionAnswering
- >>> from datasets import load_dataset
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True)
- >>> model = LayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac")
- >>> dataset = load_dataset("nielsr/funsd", split="train", trust_remote_code=True)
- >>> example = dataset[0]
- >>> question = "what's his name?"
- >>> words = example["words"]
- >>> boxes = example["bboxes"]
- >>> encoding = tokenizer(
- ... question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="pt"
- ... )
- >>> bbox = []
- >>> for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)):
- ... if s == 1:
- ... bbox.append(boxes[w])
- ... elif i == tokenizer.sep_token_id:
- ... bbox.append([1000] * 4)
- ... else:
- ... bbox.append([0] * 4)
- >>> encoding["bbox"] = torch.tensor([bbox])
- >>> word_ids = encoding.word_ids(0)
- >>> outputs = model(**encoding)
- >>> loss = outputs.loss
- >>> start_scores = outputs.start_logits
- >>> end_scores = outputs.end_logits
- >>> start, end = word_ids[start_scores.argmax(-1)], word_ids[end_scores.argmax(-1)]
- >>> print(" ".join(words[start : end + 1]))
- M. Hamann P. Harper, P. Martinez
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.layoutlm(
- input_ids=input_ids,
- bbox=bbox,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
|