| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for LayoutLMv2."""
- from typing import Dict, Optional, Union
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
- from ...image_utils import (
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- infer_channel_dimension_format,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import (
- TensorType,
- filter_out_non_signature_kwargs,
- is_pytesseract_available,
- is_vision_available,
- logging,
- requires_backends,
- )
- if is_vision_available():
- import PIL
- # soft dependency
- if is_pytesseract_available():
- import pytesseract
- logger = logging.get_logger(__name__)
- def normalize_box(box, width, height):
- return [
- int(1000 * (box[0] / width)),
- int(1000 * (box[1] / height)),
- int(1000 * (box[2] / width)),
- int(1000 * (box[3] / height)),
- ]
- def apply_tesseract(
- image: np.ndarray,
- lang: Optional[str],
- tesseract_config: Optional[str] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ):
- """Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes."""
- tesseract_config = tesseract_config if tesseract_config is not None else ""
- # apply OCR
- pil_image = to_pil_image(image, input_data_format=input_data_format)
- image_width, image_height = pil_image.size
- data = pytesseract.image_to_data(pil_image, lang=lang, output_type="dict", config=tesseract_config)
- words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"]
- # filter empty words and corresponding coordinates
- irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()]
- words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices]
- left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices]
- top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices]
- width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices]
- height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices]
- # turn coordinates into (left, top, left+width, top+height) format
- actual_boxes = []
- for x, y, w, h in zip(left, top, width, height):
- actual_box = [x, y, x + w, y + h]
- actual_boxes.append(actual_box)
- # finally, normalize the bounding boxes
- normalized_boxes = []
- for box in actual_boxes:
- normalized_boxes.append(normalize_box(box, image_width, image_height))
- assert len(words) == len(normalized_boxes), "Not as many words as there are bounding boxes"
- return words, normalized_boxes
- class LayoutLMv2ImageProcessor(BaseImageProcessor):
- r"""
- Constructs a LayoutLMv2 image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's (height, width) dimensions to `(size["height"], size["width"])`. Can be
- overridden by `do_resize` in `preprocess`.
- size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
- Size of the image after resizing. Can be overridden by `size` in `preprocess`.
- resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
- Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
- `preprocess` method.
- apply_ocr (`bool`, *optional*, defaults to `True`):
- Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. Can be overridden by
- `apply_ocr` in `preprocess`.
- ocr_lang (`str`, *optional*):
- The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
- used. Can be overridden by `ocr_lang` in `preprocess`.
- tesseract_config (`str`, *optional*, defaults to `""`):
- Any additional custom configuration flags that are forwarded to the `config` parameter when calling
- Tesseract. For example: '--psm 6'. Can be overridden by `tesseract_config` in `preprocess`.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BILINEAR,
- apply_ocr: bool = True,
- ocr_lang: Optional[str] = None,
- tesseract_config: Optional[str] = "",
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- size = size if size is not None else {"height": 224, "width": 224}
- size = get_size_dict(size)
- self.do_resize = do_resize
- self.size = size
- self.resample = resample
- self.apply_ocr = apply_ocr
- self.ocr_lang = ocr_lang
- self.tesseract_config = tesseract_config
- # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BILINEAR,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image to `(size["height"], size["width"])`.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
- `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
- data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the output image. If unset, the channel dimension format of the input
- image is used. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- Returns:
- `np.ndarray`: The resized image.
- """
- size = get_size_dict(size)
- if "height" not in size or "width" not in size:
- raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
- output_size = (size["height"], size["width"])
- return resize(
- image,
- size=output_size,
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- apply_ocr: bool = None,
- ocr_lang: Optional[str] = None,
- tesseract_config: Optional[str] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: ChannelDimension = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Desired size of the output image after resizing.
- resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PIL.Image` resampling
- filter. Only has an effect if `do_resize` is set to `True`.
- apply_ocr (`bool`, *optional*, defaults to `self.apply_ocr`):
- Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes.
- ocr_lang (`str`, *optional*, defaults to `self.ocr_lang`):
- The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
- used.
- tesseract_config (`str`, *optional*, defaults to `self.tesseract_config`):
- Any additional custom configuration flags that are forwarded to the `config` parameter when calling
- Tesseract.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- size = get_size_dict(size)
- resample = resample if resample is not None else self.resample
- apply_ocr = apply_ocr if apply_ocr is not None else self.apply_ocr
- ocr_lang = ocr_lang if ocr_lang is not None else self.ocr_lang
- tesseract_config = tesseract_config if tesseract_config is not None else self.tesseract_config
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- validate_preprocess_arguments(
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- # All transformations expect numpy arrays.
- images = [to_numpy_array(image) for image in images]
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- if apply_ocr:
- requires_backends(self, "pytesseract")
- words_batch = []
- boxes_batch = []
- for image in images:
- words, boxes = apply_tesseract(image, ocr_lang, tesseract_config, input_data_format=input_data_format)
- words_batch.append(words)
- boxes_batch.append(boxes)
- if do_resize:
- images = [
- self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
- for image in images
- ]
- # flip color channels from RGB to BGR (as Detectron2 requires this)
- images = [flip_channel_order(image, input_data_format=input_data_format) for image in images]
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
- ]
- data = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
- if apply_ocr:
- data["words"] = words_batch
- data["boxes"] = boxes_batch
- return data
|