| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417 |
- # coding=utf-8
- # Copyright 2021 Microsoft Research The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch LayoutLMv2 model."""
- import math
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPooling,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import apply_chunking_to_forward
- from ...utils import (
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- is_detectron2_available,
- logging,
- replace_return_docstrings,
- requires_backends,
- )
- from .configuration_layoutlmv2 import LayoutLMv2Config
- # soft dependency
- if is_detectron2_available():
- import detectron2
- from detectron2.modeling import META_ARCH_REGISTRY
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "microsoft/layoutlmv2-base-uncased"
- _CONFIG_FOR_DOC = "LayoutLMv2Config"
- class LayoutLMv2Embeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings."""
- def __init__(self, config):
- super(LayoutLMv2Embeddings, self).__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
- self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
- self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
- self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
- self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- def _calc_spatial_position_embeddings(self, bbox):
- try:
- left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
- upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
- right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
- lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
- except IndexError as e:
- raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e
- h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
- w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
- spatial_position_embeddings = torch.cat(
- [
- left_position_embeddings,
- upper_position_embeddings,
- right_position_embeddings,
- lower_position_embeddings,
- h_position_embeddings,
- w_position_embeddings,
- ],
- dim=-1,
- )
- return spatial_position_embeddings
- class LayoutLMv2SelfAttention(nn.Module):
- def __init__(self, config):
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads})"
- )
- self.fast_qkv = config.fast_qkv
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.has_relative_attention_bias = config.has_relative_attention_bias
- self.has_spatial_attention_bias = config.has_spatial_attention_bias
- if config.fast_qkv:
- self.qkv_linear = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=False)
- self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
- self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
- else:
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
- def compute_qkv(self, hidden_states):
- if self.fast_qkv:
- qkv = self.qkv_linear(hidden_states)
- q, k, v = torch.chunk(qkv, 3, dim=-1)
- if q.ndimension() == self.q_bias.ndimension():
- q = q + self.q_bias
- v = v + self.v_bias
- else:
- _sz = (1,) * (q.ndimension() - 1) + (-1,)
- q = q + self.q_bias.view(*_sz)
- v = v + self.v_bias.view(*_sz)
- else:
- q = self.query(hidden_states)
- k = self.key(hidden_states)
- v = self.value(hidden_states)
- return q, k, v
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- head_mask=None,
- output_attentions=False,
- rel_pos=None,
- rel_2d_pos=None,
- ):
- q, k, v = self.compute_qkv(hidden_states)
- # (B, L, H*D) -> (B, H, L, D)
- query_layer = self.transpose_for_scores(q)
- key_layer = self.transpose_for_scores(k)
- value_layer = self.transpose_for_scores(v)
- query_layer = query_layer / math.sqrt(self.attention_head_size)
- # [BSZ, NAT, L, L]
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- if self.has_relative_attention_bias:
- attention_scores += rel_pos
- if self.has_spatial_attention_bias:
- attention_scores += rel_2d_pos
- attention_scores = attention_scores.float().masked_fill_(
- attention_mask.to(torch.bool), torch.finfo(attention_scores.dtype).min
- )
- attention_probs = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).type_as(value_layer)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(*new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- return outputs
- class LayoutLMv2Attention(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.self = LayoutLMv2SelfAttention(config)
- self.output = LayoutLMv2SelfOutput(config)
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- head_mask=None,
- output_attentions=False,
- rel_pos=None,
- rel_2d_pos=None,
- ):
- self_outputs = self.self(
- hidden_states,
- attention_mask,
- head_mask,
- output_attentions,
- rel_pos=rel_pos,
- rel_2d_pos=rel_2d_pos,
- )
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- class LayoutLMv2SelfOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->LayoutLMv2
- class LayoutLMv2Intermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM
- class LayoutLMv2Output(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- class LayoutLMv2Layer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = LayoutLMv2Attention(config)
- self.intermediate = LayoutLMv2Intermediate(config)
- self.output = LayoutLMv2Output(config)
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- head_mask=None,
- output_attentions=False,
- rel_pos=None,
- rel_2d_pos=None,
- ):
- self_attention_outputs = self.attention(
- hidden_states,
- attention_mask,
- head_mask,
- output_attentions=output_attentions,
- rel_pos=rel_pos,
- rel_2d_pos=rel_2d_pos,
- )
- attention_output = self_attention_outputs[0]
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- layer_output = apply_chunking_to_forward(
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
- )
- outputs = (layer_output,) + outputs
- return outputs
- def feed_forward_chunk(self, attention_output):
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
- def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
- """
- Adapted from Mesh Tensorflow:
- https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
- Translate relative position to a bucket number for relative attention. The relative position is defined as
- memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
- position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small
- absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions
- >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should
- allow for more graceful generalization to longer sequences than the model has been trained on.
- Args:
- relative_position: an int32 Tensor
- bidirectional: a boolean - whether the attention is bidirectional
- num_buckets: an integer
- max_distance: an integer
- Returns:
- a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
- """
- ret = 0
- if bidirectional:
- num_buckets //= 2
- ret += (relative_position > 0).long() * num_buckets
- n = torch.abs(relative_position)
- else:
- n = torch.max(-relative_position, torch.zeros_like(relative_position))
- # now n is in the range [0, inf)
- # half of the buckets are for exact increments in positions
- max_exact = num_buckets // 2
- is_small = n < max_exact
- # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
- val_if_large = max_exact + (
- torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
- ).to(torch.long)
- val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
- ret += torch.where(is_small, n, val_if_large)
- return ret
- class LayoutLMv2Encoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.layer = nn.ModuleList([LayoutLMv2Layer(config) for _ in range(config.num_hidden_layers)])
- self.has_relative_attention_bias = config.has_relative_attention_bias
- self.has_spatial_attention_bias = config.has_spatial_attention_bias
- if self.has_relative_attention_bias:
- self.rel_pos_bins = config.rel_pos_bins
- self.max_rel_pos = config.max_rel_pos
- self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False)
- if self.has_spatial_attention_bias:
- self.max_rel_2d_pos = config.max_rel_2d_pos
- self.rel_2d_pos_bins = config.rel_2d_pos_bins
- self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
- self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
- self.gradient_checkpointing = False
- def _calculate_1d_position_embeddings(self, position_ids):
- rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1)
- rel_pos = relative_position_bucket(
- rel_pos_mat,
- num_buckets=self.rel_pos_bins,
- max_distance=self.max_rel_pos,
- )
- # Since this is a simple indexing operation that is independent of the input,
- # no need to track gradients for this operation
- #
- # Without this no_grad context, training speed slows down significantly
- with torch.no_grad():
- rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2)
- rel_pos = rel_pos.contiguous()
- return rel_pos
- def _calculate_2d_position_embeddings(self, bbox):
- position_coord_x = bbox[:, :, 0]
- position_coord_y = bbox[:, :, 3]
- rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1)
- rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1)
- rel_pos_x = relative_position_bucket(
- rel_pos_x_2d_mat,
- num_buckets=self.rel_2d_pos_bins,
- max_distance=self.max_rel_2d_pos,
- )
- rel_pos_y = relative_position_bucket(
- rel_pos_y_2d_mat,
- num_buckets=self.rel_2d_pos_bins,
- max_distance=self.max_rel_2d_pos,
- )
- # Since this is a simple indexing operation that is independent of the input,
- # no need to track gradients for this operation
- #
- # Without this no_grad context, training speed slows down significantly
- with torch.no_grad():
- rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2)
- rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2)
- rel_pos_x = rel_pos_x.contiguous()
- rel_pos_y = rel_pos_y.contiguous()
- rel_2d_pos = rel_pos_x + rel_pos_y
- return rel_2d_pos
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- head_mask=None,
- output_attentions=False,
- output_hidden_states=False,
- return_dict=True,
- bbox=None,
- position_ids=None,
- ):
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- rel_pos = self._calculate_1d_position_embeddings(position_ids) if self.has_relative_attention_bias else None
- rel_2d_pos = self._calculate_2d_position_embeddings(bbox) if self.has_spatial_attention_bias else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- attention_mask,
- layer_head_mask,
- output_attentions,
- rel_pos=rel_pos,
- rel_2d_pos=rel_2d_pos,
- )
- else:
- layer_outputs = layer_module(
- hidden_states,
- attention_mask,
- layer_head_mask,
- output_attentions,
- rel_pos=rel_pos,
- rel_2d_pos=rel_2d_pos,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(
- v
- for v in [
- hidden_states,
- all_hidden_states,
- all_self_attentions,
- ]
- if v is not None
- )
- return BaseModelOutput(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- )
- class LayoutLMv2PreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = LayoutLMv2Config
- base_model_prefix = "layoutlmv2"
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, nn.Linear):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- elif isinstance(module, LayoutLMv2Model):
- if hasattr(module, "visual_segment_embedding"):
- module.visual_segment_embedding.data.normal_(mean=0.0, std=self.config.initializer_range)
- def my_convert_sync_batchnorm(module, process_group=None):
- # same as `nn.modules.SyncBatchNorm.convert_sync_batchnorm` but allowing converting from `detectron2.layers.FrozenBatchNorm2d`
- if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
- return nn.modules.SyncBatchNorm.convert_sync_batchnorm(module, process_group)
- module_output = module
- if isinstance(module, detectron2.layers.FrozenBatchNorm2d):
- module_output = torch.nn.SyncBatchNorm(
- num_features=module.num_features,
- eps=module.eps,
- affine=True,
- track_running_stats=True,
- process_group=process_group,
- )
- module_output.weight = torch.nn.Parameter(module.weight)
- module_output.bias = torch.nn.Parameter(module.bias)
- module_output.running_mean = module.running_mean
- module_output.running_var = module.running_var
- module_output.num_batches_tracked = torch.tensor(0, dtype=torch.long, device=module.running_mean.device)
- for name, child in module.named_children():
- module_output.add_module(name, my_convert_sync_batchnorm(child, process_group))
- del module
- return module_output
- class LayoutLMv2VisualBackbone(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.cfg = config.get_detectron2_config()
- meta_arch = self.cfg.MODEL.META_ARCHITECTURE
- model = META_ARCH_REGISTRY.get(meta_arch)(self.cfg)
- assert isinstance(model.backbone, detectron2.modeling.backbone.FPN)
- self.backbone = model.backbone
- assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD)
- num_channels = len(self.cfg.MODEL.PIXEL_MEAN)
- self.register_buffer(
- "pixel_mean",
- torch.Tensor(self.cfg.MODEL.PIXEL_MEAN).view(num_channels, 1, 1),
- persistent=False,
- )
- self.register_buffer(
- "pixel_std", torch.Tensor(self.cfg.MODEL.PIXEL_STD).view(num_channels, 1, 1), persistent=False
- )
- self.out_feature_key = "p2"
- if torch.are_deterministic_algorithms_enabled():
- logger.warning("using `AvgPool2d` instead of `AdaptiveAvgPool2d`")
- input_shape = (224, 224)
- backbone_stride = self.backbone.output_shape()[self.out_feature_key].stride
- self.pool = nn.AvgPool2d(
- (
- math.ceil(math.ceil(input_shape[0] / backbone_stride) / config.image_feature_pool_shape[0]),
- math.ceil(math.ceil(input_shape[1] / backbone_stride) / config.image_feature_pool_shape[1]),
- )
- )
- else:
- self.pool = nn.AdaptiveAvgPool2d(config.image_feature_pool_shape[:2])
- if len(config.image_feature_pool_shape) == 2:
- config.image_feature_pool_shape.append(self.backbone.output_shape()[self.out_feature_key].channels)
- assert self.backbone.output_shape()[self.out_feature_key].channels == config.image_feature_pool_shape[2]
- def forward(self, images):
- images_input = ((images if torch.is_tensor(images) else images.tensor) - self.pixel_mean) / self.pixel_std
- features = self.backbone(images_input)
- features = features[self.out_feature_key]
- features = self.pool(features).flatten(start_dim=2).transpose(1, 2).contiguous()
- return features
- def synchronize_batch_norm(self):
- if not (
- torch.distributed.is_available()
- and torch.distributed.is_initialized()
- and torch.distributed.get_rank() > -1
- ):
- raise RuntimeError("Make sure torch.distributed is set up properly.")
- self_rank = torch.distributed.get_rank()
- node_size = torch.cuda.device_count()
- world_size = torch.distributed.get_world_size()
- if not (world_size % node_size == 0):
- raise RuntimeError("Make sure the number of processes can be divided by the number of nodes")
- node_global_ranks = [list(range(i * node_size, (i + 1) * node_size)) for i in range(world_size // node_size)]
- sync_bn_groups = [
- torch.distributed.new_group(ranks=node_global_ranks[i]) for i in range(world_size // node_size)
- ]
- node_rank = self_rank // node_size
- self.backbone = my_convert_sync_batchnorm(self.backbone, process_group=sync_bn_groups[node_rank])
- LAYOUTLMV2_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
- it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`LayoutLMv2Config`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- LAYOUTLMV2_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `{0}`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*):
- Bounding boxes of each input sequence tokens. Selected in the range `[0,
- config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
- format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
- y1) represents the position of the lower right corner.
- image (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `detectron.structures.ImageList` whose `tensors` is of shape `(batch_size, num_channels, height, width)`):
- Batch of document images.
- attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `{0}`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- class LayoutLMv2Pooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- @add_start_docstrings(
- "The bare LayoutLMv2 Model transformer outputting raw hidden-states without any specific head on top.",
- LAYOUTLMV2_START_DOCSTRING,
- )
- class LayoutLMv2Model(LayoutLMv2PreTrainedModel):
- def __init__(self, config):
- requires_backends(self, "detectron2")
- super().__init__(config)
- self.config = config
- self.has_visual_segment_embedding = config.has_visual_segment_embedding
- self.embeddings = LayoutLMv2Embeddings(config)
- self.visual = LayoutLMv2VisualBackbone(config)
- self.visual_proj = nn.Linear(config.image_feature_pool_shape[-1], config.hidden_size)
- if self.has_visual_segment_embedding:
- self.visual_segment_embedding = nn.Parameter(nn.Embedding(1, config.hidden_size).weight[0])
- self.visual_LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.visual_dropout = nn.Dropout(config.hidden_dropout_prob)
- self.encoder = LayoutLMv2Encoder(config)
- self.pooler = LayoutLMv2Pooler(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.embeddings.word_embeddings = value
- def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids, inputs_embeds=None):
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
- position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
- if token_type_ids is None:
- token_type_ids = torch.zeros_like(input_ids)
- if inputs_embeds is None:
- inputs_embeds = self.embeddings.word_embeddings(input_ids)
- position_embeddings = self.embeddings.position_embeddings(position_ids)
- spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
- token_type_embeddings = self.embeddings.token_type_embeddings(token_type_ids)
- embeddings = inputs_embeds + position_embeddings + spatial_position_embeddings + token_type_embeddings
- embeddings = self.embeddings.LayerNorm(embeddings)
- embeddings = self.embeddings.dropout(embeddings)
- return embeddings
- def _calc_img_embeddings(self, image, bbox, position_ids):
- visual_embeddings = self.visual_proj(self.visual(image))
- position_embeddings = self.embeddings.position_embeddings(position_ids)
- spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
- embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings
- if self.has_visual_segment_embedding:
- embeddings += self.visual_segment_embedding
- embeddings = self.visual_LayerNorm(embeddings)
- embeddings = self.visual_dropout(embeddings)
- return embeddings
- def _calc_visual_bbox(self, image_feature_pool_shape, bbox, device, final_shape):
- visual_bbox_x = torch.div(
- torch.arange(
- 0,
- 1000 * (image_feature_pool_shape[1] + 1),
- 1000,
- device=device,
- dtype=bbox.dtype,
- ),
- self.config.image_feature_pool_shape[1],
- rounding_mode="floor",
- )
- visual_bbox_y = torch.div(
- torch.arange(
- 0,
- 1000 * (self.config.image_feature_pool_shape[0] + 1),
- 1000,
- device=device,
- dtype=bbox.dtype,
- ),
- self.config.image_feature_pool_shape[0],
- rounding_mode="floor",
- )
- visual_bbox = torch.stack(
- [
- visual_bbox_x[:-1].repeat(image_feature_pool_shape[0], 1),
- visual_bbox_y[:-1].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
- visual_bbox_x[1:].repeat(image_feature_pool_shape[0], 1),
- visual_bbox_y[1:].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
- ],
- dim=-1,
- ).view(-1, bbox.size(-1))
- visual_bbox = visual_bbox.repeat(final_shape[0], 1, 1)
- return visual_bbox
- def _get_input_shape(self, input_ids=None, inputs_embeds=None):
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- return input_ids.size()
- elif inputs_embeds is not None:
- return inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
- @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- image: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- r"""
- Return:
- Examples:
- ```python
- >>> from transformers import AutoProcessor, LayoutLMv2Model, set_seed
- >>> from PIL import Image
- >>> import torch
- >>> from datasets import load_dataset
- >>> set_seed(0)
- >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
- >>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased")
- >>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa", trust_remote_code=True)
- >>> image_path = dataset["test"][0]["file"]
- >>> image = Image.open(image_path).convert("RGB")
- >>> encoding = processor(image, return_tensors="pt")
- >>> outputs = model(**encoding)
- >>> last_hidden_states = outputs.last_hidden_state
- >>> last_hidden_states.shape
- torch.Size([1, 342, 768])
- ```
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- input_shape = self._get_input_shape(input_ids, inputs_embeds)
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- visual_shape = list(input_shape)
- visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
- visual_shape = torch.Size(visual_shape)
- # needs a new copy of input_shape for tracing. Otherwise wrong dimensions will occur
- final_shape = list(self._get_input_shape(input_ids, inputs_embeds))
- final_shape[1] += visual_shape[1]
- final_shape = torch.Size(final_shape)
- visual_bbox = self._calc_visual_bbox(self.config.image_feature_pool_shape, bbox, device, final_shape)
- final_bbox = torch.cat([bbox, visual_bbox], dim=1)
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=device)
- visual_attention_mask = torch.ones(visual_shape, device=device)
- final_attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1)
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- if position_ids is None:
- seq_length = input_shape[1]
- position_ids = self.embeddings.position_ids[:, :seq_length]
- position_ids = position_ids.expand(input_shape)
- visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
- input_shape[0], 1
- )
- final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1)
- if bbox is None:
- bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device)
- text_layout_emb = self._calc_text_embeddings(
- input_ids=input_ids,
- bbox=bbox,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- inputs_embeds=inputs_embeds,
- )
- visual_emb = self._calc_img_embeddings(
- image=image,
- bbox=visual_bbox,
- position_ids=visual_position_ids,
- )
- final_emb = torch.cat([text_layout_emb, visual_emb], dim=1)
- extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze(2)
- extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
- extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
- if head_mask is not None:
- if head_mask.dim() == 1:
- head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
- head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
- elif head_mask.dim() == 2:
- head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
- head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
- else:
- head_mask = [None] * self.config.num_hidden_layers
- encoder_outputs = self.encoder(
- final_emb,
- extended_attention_mask,
- bbox=final_bbox,
- position_ids=final_position_ids,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(sequence_output)
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings(
- """
- LayoutLMv2 Model with a sequence classification head on top (a linear layer on top of the concatenation of the
- final hidden state of the [CLS] token, average-pooled initial visual embeddings and average-pooled final visual
- embeddings, e.g. for document image classification tasks such as the
- [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset.
- """,
- LAYOUTLMV2_START_DOCSTRING,
- )
- class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.layoutlmv2 = LayoutLMv2Model(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.layoutlmv2.embeddings.word_embeddings
- @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- image: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- Returns:
- Example:
- ```python
- >>> from transformers import AutoProcessor, LayoutLMv2ForSequenceClassification, set_seed
- >>> from PIL import Image
- >>> import torch
- >>> from datasets import load_dataset
- >>> set_seed(0)
- >>> dataset = load_dataset("aharley/rvl_cdip", split="train", streaming=True, trust_remote_code=True)
- >>> data = next(iter(dataset))
- >>> image = data["image"].convert("RGB")
- >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
- >>> model = LayoutLMv2ForSequenceClassification.from_pretrained(
- ... "microsoft/layoutlmv2-base-uncased", num_labels=dataset.info.features["label"].num_classes
- ... )
- >>> encoding = processor(image, return_tensors="pt")
- >>> sequence_label = torch.tensor([data["label"]])
- >>> outputs = model(**encoding, labels=sequence_label)
- >>> loss, logits = outputs.loss, outputs.logits
- >>> predicted_idx = logits.argmax(dim=-1).item()
- >>> predicted_answer = dataset.info.features["label"].names[4]
- >>> predicted_idx, predicted_answer # results are not good without further fine-tuning
- (7, 'advertisement')
- ```
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- visual_shape = list(input_shape)
- visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
- visual_shape = torch.Size(visual_shape)
- final_shape = list(input_shape)
- final_shape[1] += visual_shape[1]
- final_shape = torch.Size(final_shape)
- visual_bbox = self.layoutlmv2._calc_visual_bbox(
- self.config.image_feature_pool_shape, bbox, device, final_shape
- )
- visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
- input_shape[0], 1
- )
- initial_image_embeddings = self.layoutlmv2._calc_img_embeddings(
- image=image,
- bbox=visual_bbox,
- position_ids=visual_position_ids,
- )
- outputs = self.layoutlmv2(
- input_ids=input_ids,
- bbox=bbox,
- image=image,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- sequence_output, final_image_embeddings = outputs[0][:, :seq_length], outputs[0][:, seq_length:]
- cls_final_output = sequence_output[:, 0, :]
- # average-pool the visual embeddings
- pooled_initial_image_embeddings = initial_image_embeddings.mean(dim=1)
- pooled_final_image_embeddings = final_image_embeddings.mean(dim=1)
- # concatenate with cls_final_output
- sequence_output = torch.cat(
- [cls_final_output, pooled_initial_image_embeddings, pooled_final_image_embeddings], dim=1
- )
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- LayoutLMv2 Model with a token classification head on top (a linear layer on top of the text part of the hidden
- states) e.g. for sequence labeling (information extraction) tasks such as
- [FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13),
- [CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda).
- """,
- LAYOUTLMV2_START_DOCSTRING,
- )
- class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.layoutlmv2 = LayoutLMv2Model(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.layoutlmv2.embeddings.word_embeddings
- @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- image: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- Returns:
- Example:
- ```python
- >>> from transformers import AutoProcessor, LayoutLMv2ForTokenClassification, set_seed
- >>> from PIL import Image
- >>> from datasets import load_dataset
- >>> set_seed(0)
- >>> datasets = load_dataset("nielsr/funsd", split="test", trust_remote_code=True)
- >>> labels = datasets.features["ner_tags"].feature.names
- >>> id2label = {v: k for v, k in enumerate(labels)}
- >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
- >>> model = LayoutLMv2ForTokenClassification.from_pretrained(
- ... "microsoft/layoutlmv2-base-uncased", num_labels=len(labels)
- ... )
- >>> data = datasets[0]
- >>> image = Image.open(data["image_path"]).convert("RGB")
- >>> words = data["words"]
- >>> boxes = data["bboxes"] # make sure to normalize your bounding boxes
- >>> word_labels = data["ner_tags"]
- >>> encoding = processor(
- ... image,
- ... words,
- ... boxes=boxes,
- ... word_labels=word_labels,
- ... padding="max_length",
- ... truncation=True,
- ... return_tensors="pt",
- ... )
- >>> outputs = model(**encoding)
- >>> logits, loss = outputs.logits, outputs.loss
- >>> predicted_token_class_ids = logits.argmax(-1)
- >>> predicted_tokens_classes = [id2label[t.item()] for t in predicted_token_class_ids[0]]
- >>> predicted_tokens_classes[:5] # results are not good without further fine-tuning
- ['I-HEADER', 'I-HEADER', 'I-QUESTION', 'I-HEADER', 'I-QUESTION']
- ```
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.layoutlmv2(
- input_ids=input_ids,
- bbox=bbox,
- image=image,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- # only take the text part of the output representations
- sequence_output = outputs[0][:, :seq_length]
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- LayoutLMv2 Model with a span classification head on top for extractive question-answering tasks such as
- [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to
- compute `span start logits` and `span end logits`).
- """,
- LAYOUTLMV2_START_DOCSTRING,
- )
- class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel):
- def __init__(self, config, has_visual_segment_embedding=True):
- super().__init__(config)
- self.num_labels = config.num_labels
- config.has_visual_segment_embedding = has_visual_segment_embedding
- self.layoutlmv2 = LayoutLMv2Model(config)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.layoutlmv2.embeddings.word_embeddings
- @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- bbox: Optional[torch.LongTensor] = None,
- image: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- Returns:
- Example:
- In this example below, we give the LayoutLMv2 model an image (of texts) and ask it a question. It will give us
- a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image).
- ```python
- >>> from transformers import AutoProcessor, LayoutLMv2ForQuestionAnswering, set_seed
- >>> import torch
- >>> from PIL import Image
- >>> from datasets import load_dataset
- >>> set_seed(0)
- >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
- >>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased")
- >>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa", trust_remote_code=True)
- >>> image_path = dataset["test"][0]["file"]
- >>> image = Image.open(image_path).convert("RGB")
- >>> question = "When is coffee break?"
- >>> encoding = processor(image, question, return_tensors="pt")
- >>> outputs = model(**encoding)
- >>> predicted_start_idx = outputs.start_logits.argmax(-1).item()
- >>> predicted_end_idx = outputs.end_logits.argmax(-1).item()
- >>> predicted_start_idx, predicted_end_idx
- (30, 191)
- >>> predicted_answer_tokens = encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1]
- >>> predicted_answer = processor.tokenizer.decode(predicted_answer_tokens)
- >>> predicted_answer # results are not good without further fine-tuning
- '44 a. m. to 12 : 25 p. m. 12 : 25 to 12 : 58 p. m. 12 : 58 to 4 : 00 p. m. 2 : 00 to 5 : 00 p. m. coffee break coffee will be served for men and women in the lobby adjacent to exhibit area. please move into exhibit area. ( exhibits open ) trrf general session ( part | ) presiding : lee a. waller trrf vice president “ introductory remarks ” lee a. waller, trrf vice presi - dent individual interviews with trrf public board members and sci - entific advisory council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public refrigerated warehousing industry is looking for. plus questions from'
- ```
- ```python
- >>> target_start_index = torch.tensor([7])
- >>> target_end_index = torch.tensor([14])
- >>> outputs = model(**encoding, start_positions=target_start_index, end_positions=target_end_index)
- >>> predicted_answer_span_start = outputs.start_logits.argmax(-1).item()
- >>> predicted_answer_span_end = outputs.end_logits.argmax(-1).item()
- >>> predicted_answer_span_start, predicted_answer_span_end
- (30, 191)
- ```
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.layoutlmv2(
- input_ids=input_ids,
- bbox=bbox,
- image=image,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- # only take the text part of the output representations
- sequence_output = outputs[0][:, :seq_length]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
|