| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for LayoutLMv3.
- """
- import warnings
- from typing import List, Optional, Union
- from ...processing_utils import ProcessorMixin
- from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
- from ...utils import TensorType
- class LayoutLMv3Processor(ProcessorMixin):
- r"""
- Constructs a LayoutLMv3 processor which combines a LayoutLMv3 image processor and a LayoutLMv3 tokenizer into a
- single processor.
- [`LayoutLMv3Processor`] offers all the functionalities you need to prepare data for the model.
- It first uses [`LayoutLMv3ImageProcessor`] to resize and normalize document images, and optionally applies OCR to
- get words and normalized bounding boxes. These are then provided to [`LayoutLMv3Tokenizer`] or
- [`LayoutLMv3TokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`,
- `attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned
- into token-level `labels` for token classification tasks (such as FUNSD, CORD).
- Args:
- image_processor (`LayoutLMv3ImageProcessor`, *optional*):
- An instance of [`LayoutLMv3ImageProcessor`]. The image processor is a required input.
- tokenizer (`LayoutLMv3Tokenizer` or `LayoutLMv3TokenizerFast`, *optional*):
- An instance of [`LayoutLMv3Tokenizer`] or [`LayoutLMv3TokenizerFast`]. The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- image_processor_class = "LayoutLMv3ImageProcessor"
- tokenizer_class = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast")
- def __init__(self, image_processor=None, tokenizer=None, **kwargs):
- feature_extractor = None
- if "feature_extractor" in kwargs:
- warnings.warn(
- "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
- " instead.",
- FutureWarning,
- )
- feature_extractor = kwargs.pop("feature_extractor")
- image_processor = image_processor if image_processor is not None else feature_extractor
- if image_processor is None:
- raise ValueError("You need to specify an `image_processor`.")
- if tokenizer is None:
- raise ValueError("You need to specify a `tokenizer`.")
- super().__init__(image_processor, tokenizer)
- def __call__(
- self,
- images,
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
- text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
- boxes: Union[List[List[int]], List[List[List[int]]]] = None,
- word_labels: Optional[Union[List[int], List[List[int]]]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- return_tensors: Optional[Union[str, TensorType]] = None,
- **kwargs,
- ) -> BatchEncoding:
- """
- This method first forwards the `images` argument to [`~LayoutLMv3ImageProcessor.__call__`]. In case
- [`LayoutLMv3ImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
- bounding boxes along with the additional arguments to [`~LayoutLMv3Tokenizer.__call__`] and returns the output,
- together with resized and normalized `pixel_values`. In case [`LayoutLMv3ImageProcessor`] was initialized with
- `apply_ocr` set to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along
- with the additional arguments to [`~LayoutLMv3Tokenizer.__call__`] and returns the output, together with
- resized and normalized `pixel_values`.
- Please refer to the docstring of the above two methods for more information.
- """
- # verify input
- if self.image_processor.apply_ocr and (boxes is not None):
- raise ValueError(
- "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True."
- )
- if self.image_processor.apply_ocr and (word_labels is not None):
- raise ValueError(
- "You cannot provide word labels if you initialized the image processor with apply_ocr set to True."
- )
- # first, apply the image processor
- features = self.image_processor(images=images, return_tensors=return_tensors)
- # second, apply the tokenizer
- if text is not None and self.image_processor.apply_ocr and text_pair is None:
- if isinstance(text, str):
- text = [text] # add batch dimension (as the image processor always adds a batch dimension)
- text_pair = features["words"]
- encoded_inputs = self.tokenizer(
- text=text if text is not None else features["words"],
- text_pair=text_pair if text_pair is not None else None,
- boxes=boxes if boxes is not None else features["boxes"],
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- return_tensors=return_tensors,
- **kwargs,
- )
- # add pixel values
- images = features.pop("pixel_values")
- if return_overflowing_tokens is True:
- images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"])
- encoded_inputs["pixel_values"] = images
- return encoded_inputs
- def get_overflowing_images(self, images, overflow_to_sample_mapping):
- # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
- images_with_overflow = []
- for sample_idx in overflow_to_sample_mapping:
- images_with_overflow.append(images[sample_idx])
- if len(images_with_overflow) != len(overflow_to_sample_mapping):
- raise ValueError(
- "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
- f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}"
- )
- return images_with_overflow
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
- to the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- return ["input_ids", "bbox", "attention_mask", "pixel_values"]
- @property
- def feature_extractor_class(self):
- warnings.warn(
- "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
- FutureWarning,
- )
- return self.image_processor_class
- @property
- def feature_extractor(self):
- warnings.warn(
- "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
- FutureWarning,
- )
- return self.image_processor
|