| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484 |
- # coding=utf-8
- # Copyright The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization class for LayoutLMv3. Same as LayoutLMv2, but RoBERTa-like BPE tokenization instead of WordPiece."""
- import json
- import os
- from functools import lru_cache
- from typing import Dict, List, Optional, Tuple, Union
- import regex as re
- from ...tokenization_utils import AddedToken, PreTrainedTokenizer
- from ...tokenization_utils_base import (
- BatchEncoding,
- EncodedInput,
- PreTokenizedInput,
- TextInput,
- TextInputPair,
- TruncationStrategy,
- )
- from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {
- "vocab_file": "vocab.json",
- "merges_file": "merges.txt",
- }
- LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING = r"""
- add_special_tokens (`bool`, *optional*, defaults to `True`):
- Whether or not to encode the sequences with the special tokens relative to their model.
- padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
- Activates and controls padding. Accepts the following values:
- - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
- sequence if provided).
- - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
- acceptable input length for the model if that argument is not provided.
- - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
- lengths).
- truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
- Activates and controls truncation. Accepts the following values:
- - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
- to the maximum acceptable input length for the model if that argument is not provided. This will
- truncate token by token, removing a token from the longest sequence in the pair if a pair of
- sequences (or a batch of pairs) is provided.
- - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
- greater than the model maximum admissible input size).
- max_length (`int`, *optional*):
- Controls the maximum length to use by one of the truncation/padding parameters.
- If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
- is required by one of the truncation/padding parameters. If the model has no specific maximum input
- length (like XLNet) truncation/padding to a maximum length will be deactivated.
- stride (`int`, *optional*, defaults to 0):
- If set to a number along with `max_length`, the overflowing tokens returned when
- `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
- returned to provide some overlap between truncated and overflowing sequences. The value of this
- argument defines the number of overlapping tokens.
- pad_to_multiple_of (`int`, *optional*):
- If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
- the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
- return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
- If set, will return tensors instead of list of python integers. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return Numpy `np.ndarray` objects.
- """
- LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
- add_special_tokens (`bool`, *optional*, defaults to `True`):
- Whether or not to encode the sequences with the special tokens relative to their model.
- padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
- Activates and controls padding. Accepts the following values:
- - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
- sequence if provided).
- - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
- acceptable input length for the model if that argument is not provided.
- - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
- lengths).
- truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
- Activates and controls truncation. Accepts the following values:
- - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
- to the maximum acceptable input length for the model if that argument is not provided. This will
- truncate token by token, removing a token from the longest sequence in the pair if a pair of
- sequences (or a batch of pairs) is provided.
- - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
- greater than the model maximum admissible input size).
- max_length (`int`, *optional*):
- Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
- `None`, this will use the predefined model maximum length if a maximum length is required by one of the
- truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
- truncation/padding to a maximum length will be deactivated.
- stride (`int`, *optional*, defaults to 0):
- If set to a number along with `max_length`, the overflowing tokens returned when
- `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
- returned to provide some overlap between truncated and overflowing sequences. The value of this
- argument defines the number of overlapping tokens.
- pad_to_multiple_of (`int`, *optional*):
- If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
- the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
- If set, will return tensors instead of list of python integers. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return Numpy `np.ndarray` objects.
- """
- @lru_cache()
- # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
- characters the bpe code barfs on.
- The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
- if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
- decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
- tables between utf-8 bytes and unicode strings.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- # Copied from transformers.models.roberta.tokenization_roberta.get_pairs
- def get_pairs(word):
- """
- Return set of symbol pairs in a word.
- Word is represented as tuple of symbols (symbols being variable-length strings).
- """
- pairs = set()
- prev_char = word[0]
- for char in word[1:]:
- pairs.add((prev_char, char))
- prev_char = char
- return pairs
- class LayoutLMv3Tokenizer(PreTrainedTokenizer):
- r"""
- Construct a LayoutLMv3 tokenizer. Based on [`RoBERTatokenizer`] (Byte Pair Encoding or BPE).
- [`LayoutLMv3Tokenizer`] can be used to turn words, word-level bounding boxes and optional word labels to
- token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and optional `labels` (for token
- classification).
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods.
- [`LayoutLMv3Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the
- word-level bounding boxes into token-level bounding boxes.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- merges_file (`str`):
- Path to the merges file.
- errors (`str`, *optional*, defaults to `"replace"`):
- Paradigm to follow when decoding bytes to UTF-8. See
- [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
- bos_token (`str`, *optional*, defaults to `"<s>"`):
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the beginning of
- sequence. The token used is the `cls_token`.
- </Tip>
- eos_token (`str`, *optional*, defaults to `"</s>"`):
- The end of sequence token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the end of sequence.
- The token used is the `sep_token`.
- </Tip>
- sep_token (`str`, *optional*, defaults to `"</s>"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- cls_token (`str`, *optional*, defaults to `"<s>"`):
- The classifier token which is used when doing sequence classification (classification of the whole sequence
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- pad_token (`str`, *optional*, defaults to `"<pad>"`):
- The token used for padding, for example when batching sequences of different lengths.
- mask_token (`str`, *optional*, defaults to `"<mask>"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- add_prefix_space (`bool`, *optional*, defaults to `True`):
- Whether or not to add an initial space to the input. This allows to treat the leading word just as any
- other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
- cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
- The bounding box to use for the special [CLS] token.
- sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
- The bounding box to use for the special [SEP] token.
- pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
- The bounding box to use for the special [PAD] token.
- pad_token_label (`int`, *optional*, defaults to -100):
- The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
- CrossEntropyLoss.
- only_label_first_subword (`bool`, *optional*, defaults to `True`):
- Whether or not to only label the first subword, in case word labels are provided.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask", "bbox"]
- def __init__(
- self,
- vocab_file,
- merges_file,
- errors="replace",
- bos_token="<s>",
- eos_token="</s>",
- sep_token="</s>",
- cls_token="<s>",
- unk_token="<unk>",
- pad_token="<pad>",
- mask_token="<mask>",
- add_prefix_space=True,
- cls_token_box=[0, 0, 0, 0],
- sep_token_box=[0, 0, 0, 0],
- pad_token_box=[0, 0, 0, 0],
- pad_token_label=-100,
- only_label_first_subword=True,
- **kwargs,
- ):
- bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
- eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
- sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
- cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
- unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
- pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
- # Mask token behave like a normal word, i.e. include the space before it
- mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
- with open(vocab_file, encoding="utf-8") as vocab_handle:
- self.encoder = json.load(vocab_handle)
- self.decoder = {v: k for k, v in self.encoder.items()}
- self.errors = errors # how to handle errors in decoding
- self.byte_encoder = bytes_to_unicode()
- self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
- with open(merges_file, encoding="utf-8") as merges_handle:
- bpe_merges = merges_handle.read().split("\n")[1:-1]
- bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
- self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
- self.cache = {}
- self.add_prefix_space = add_prefix_space
- # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
- self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
- # additional properties
- self.cls_token_box = cls_token_box
- self.sep_token_box = sep_token_box
- self.pad_token_box = pad_token_box
- self.pad_token_label = pad_token_label
- self.only_label_first_subword = only_label_first_subword
- super().__init__(
- errors=errors,
- bos_token=bos_token,
- eos_token=eos_token,
- unk_token=unk_token,
- sep_token=sep_token,
- cls_token=cls_token,
- pad_token=pad_token,
- mask_token=mask_token,
- add_prefix_space=add_prefix_space,
- cls_token_box=cls_token_box,
- sep_token_box=sep_token_box,
- pad_token_box=pad_token_box,
- pad_token_label=pad_token_label,
- only_label_first_subword=only_label_first_subword,
- **kwargs,
- )
- @property
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size
- def vocab_size(self):
- return len(self.encoder)
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab
- def get_vocab(self):
- vocab = dict(self.encoder).copy()
- vocab.update(self.added_tokens_encoder)
- return vocab
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe
- def bpe(self, token):
- if token in self.cache:
- return self.cache[token]
- word = tuple(token)
- pairs = get_pairs(word)
- if not pairs:
- return token
- while True:
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
- if bigram not in self.bpe_ranks:
- break
- first, second = bigram
- new_word = []
- i = 0
- while i < len(word):
- try:
- j = word.index(first, i)
- except ValueError:
- new_word.extend(word[i:])
- break
- else:
- new_word.extend(word[i:j])
- i = j
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
- new_word.append(first + second)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- new_word = tuple(new_word)
- word = new_word
- if len(word) == 1:
- break
- else:
- pairs = get_pairs(word)
- word = " ".join(word)
- self.cache[token] = word
- return word
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize
- def _tokenize(self, text):
- """Tokenize a string."""
- bpe_tokens = []
- for token in re.findall(self.pat, text):
- token = "".join(
- self.byte_encoder[b] for b in token.encode("utf-8")
- ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
- bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
- return bpe_tokens
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.encoder.get(token, self.encoder.get(self.unk_token))
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.decoder.get(index)
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- text = "".join(tokens)
- text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
- return text
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.save_vocabulary
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- merge_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
- )
- with open(vocab_file, "w", encoding="utf-8") as f:
- f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
- index = 0
- with open(merge_file, "w", encoding="utf-8") as writer:
- writer.write("#version: 0.2\n")
- for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
- if index != token_index:
- logger.warning(
- f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
- " Please check that the tokenizer is not corrupted!"
- )
- index = token_index
- writer.write(" ".join(bpe_tokens) + "\n")
- index += 1
- return vocab_file, merge_file
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.build_inputs_with_special_tokens
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. A RoBERTa sequence has the following format:
- - single sequence: `<s> X </s>`
- - pair of sequences: `<s> A </s></s> B </s>`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
- cls = [self.cls_token_id]
- sep = [self.sep_token_id]
- return cls + token_ids_0 + sep + sep + token_ids_1 + sep
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask
- def get_special_tokens_mask(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- if token_ids_1 is None:
- return [1] + ([0] * len(token_ids_0)) + [1]
- return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
- make use of token type ids, therefore a list of zeros is returned.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of zeros.
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
- def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
- add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
- # If the text starts with a token that should not be split, no space is added before the text in any case.
- # It's necessary to match the fast tokenization
- if (
- (is_split_into_words or add_prefix_space)
- and (len(text) > 0 and not text[0].isspace())
- and sum([text.startswith(no_split_token) for no_split_token in self.added_tokens_encoder]) == 0
- ):
- text = " " + text
- return (text, kwargs)
- @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.__call__
- def __call__(
- self,
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
- text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
- boxes: Union[List[List[int]], List[List[List[int]]]] = None,
- word_labels: Optional[Union[List[int], List[List[int]]]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- """
- Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
- sequences with word-level normalized bounding boxes and optional labels.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
- (words of a single example or questions of a batch of examples) or a list of list of strings (batch of
- words).
- text_pair (`List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
- (pretokenized string).
- boxes (`List[List[int]]`, `List[List[List[int]]]`):
- Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
- word_labels (`List[int]`, `List[List[int]]`, *optional*):
- Word-level integer labels (for token classification tasks such as FUNSD, CORD).
- """
- # Input type checking for clearer error
- def _is_valid_text_input(t):
- if isinstance(t, str):
- # Strings are fine
- return True
- elif isinstance(t, (list, tuple)):
- # List are fine as long as they are...
- if len(t) == 0:
- # ... empty
- return True
- elif isinstance(t[0], str):
- # ... list of strings
- return True
- elif isinstance(t[0], (list, tuple)):
- # ... list with an empty list or with a list of strings
- return len(t[0]) == 0 or isinstance(t[0][0], str)
- else:
- return False
- else:
- return False
- if text_pair is not None:
- # in case text + text_pair are provided, text = questions, text_pair = words
- if not _is_valid_text_input(text):
- raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
- if not isinstance(text_pair, (list, tuple)):
- raise ValueError(
- "Words must be of type `List[str]` (single pretokenized example), "
- "or `List[List[str]]` (batch of pretokenized examples)."
- )
- else:
- # in case only text is provided => must be words
- if not isinstance(text, (list, tuple)):
- raise ValueError(
- "Words must be of type `List[str]` (single pretokenized example), "
- "or `List[List[str]]` (batch of pretokenized examples)."
- )
- if text_pair is not None:
- is_batched = isinstance(text, (list, tuple))
- else:
- is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
- words = text if text_pair is None else text_pair
- if boxes is None:
- raise ValueError("You must provide corresponding bounding boxes")
- if is_batched:
- if len(words) != len(boxes):
- raise ValueError("You must provide words and boxes for an equal amount of examples")
- for words_example, boxes_example in zip(words, boxes):
- if len(words_example) != len(boxes_example):
- raise ValueError("You must provide as many words as there are bounding boxes")
- else:
- if len(words) != len(boxes):
- raise ValueError("You must provide as many words as there are bounding boxes")
- if is_batched:
- if text_pair is not None and len(text) != len(text_pair):
- raise ValueError(
- f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
- f" {len(text_pair)}."
- )
- batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
- is_pair = bool(text_pair is not None)
- return self.batch_encode_plus(
- batch_text_or_text_pairs=batch_text_or_text_pairs,
- is_pair=is_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- else:
- return self.encode_plus(
- text=text,
- text_pair=text_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.batch_encode_plus
- def batch_encode_plus(
- self,
- batch_text_or_text_pairs: Union[
- List[TextInput],
- List[TextInputPair],
- List[PreTokenizedInput],
- ],
- is_pair: bool = None,
- boxes: Optional[List[List[List[int]]]] = None,
- word_labels: Optional[Union[List[int], List[List[int]]]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
- padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- pad_to_multiple_of=pad_to_multiple_of,
- verbose=verbose,
- **kwargs,
- )
- return self._batch_encode_plus(
- batch_text_or_text_pairs=batch_text_or_text_pairs,
- is_pair=is_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding_strategy=padding_strategy,
- truncation_strategy=truncation_strategy,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._batch_encode_plus
- def _batch_encode_plus(
- self,
- batch_text_or_text_pairs: Union[
- List[TextInput],
- List[TextInputPair],
- List[PreTokenizedInput],
- ],
- is_pair: bool = None,
- boxes: Optional[List[List[List[int]]]] = None,
- word_labels: Optional[List[List[int]]] = None,
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- if return_offsets_mapping:
- raise NotImplementedError(
- "return_offset_mapping is not available when using Python tokenizers. "
- "To use this feature, change your tokenizer to one deriving from "
- "transformers.PreTrainedTokenizerFast."
- )
- batch_outputs = self._batch_prepare_for_model(
- batch_text_or_text_pairs=batch_text_or_text_pairs,
- is_pair=is_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding_strategy=padding_strategy,
- truncation_strategy=truncation_strategy,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- return_tensors=return_tensors,
- verbose=verbose,
- )
- return BatchEncoding(batch_outputs)
- @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._batch_prepare_for_model
- def _batch_prepare_for_model(
- self,
- batch_text_or_text_pairs,
- is_pair: bool = None,
- boxes: Optional[List[List[int]]] = None,
- word_labels: Optional[List[List[int]]] = None,
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[str] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- ) -> BatchEncoding:
- """
- Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
- adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
- manages a moving window (with user defined stride) for overflowing tokens.
- Args:
- batch_ids_pairs: list of tokenized input ids or input ids pairs
- """
- batch_outputs = {}
- for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
- batch_text_or_text_pair, boxes_example = example
- outputs = self.prepare_for_model(
- batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
- batch_text_or_text_pair[1] if is_pair else None,
- boxes_example,
- word_labels=word_labels[idx] if word_labels is not None else None,
- add_special_tokens=add_special_tokens,
- padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
- truncation=truncation_strategy.value,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=None, # we pad in batch afterward
- padding_side=None, # we pad in batch afterward
- return_attention_mask=False, # we pad in batch afterward
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- return_tensors=None, # We convert the whole batch to tensors at the end
- prepend_batch_axis=False,
- verbose=verbose,
- )
- for key, value in outputs.items():
- if key not in batch_outputs:
- batch_outputs[key] = []
- batch_outputs[key].append(value)
- batch_outputs = self.pad(
- batch_outputs,
- padding=padding_strategy.value,
- max_length=max_length,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- )
- batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
- return batch_outputs
- @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING)
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.encode
- def encode(
- self,
- text: Union[TextInput, PreTokenizedInput],
- text_pair: Optional[PreTokenizedInput] = None,
- boxes: Optional[List[List[int]]] = None,
- word_labels: Optional[List[int]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> List[int]:
- encoded_inputs = self.encode_plus(
- text=text,
- text_pair=text_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- return encoded_inputs["input_ids"]
- @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.encode_plus
- def encode_plus(
- self,
- text: Union[TextInput, PreTokenizedInput],
- text_pair: Optional[PreTokenizedInput] = None,
- boxes: Optional[List[List[int]]] = None,
- word_labels: Optional[List[int]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- """
- Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
- `__call__` should be used instead.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
- text_pair (`List[str]` or `List[int]`, *optional*):
- Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
- list of list of strings (words of a batch of examples).
- """
- # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
- padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- pad_to_multiple_of=pad_to_multiple_of,
- verbose=verbose,
- **kwargs,
- )
- return self._encode_plus(
- text=text,
- boxes=boxes,
- text_pair=text_pair,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding_strategy=padding_strategy,
- truncation_strategy=truncation_strategy,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._encode_plus
- def _encode_plus(
- self,
- text: Union[TextInput, PreTokenizedInput],
- text_pair: Optional[PreTokenizedInput] = None,
- boxes: Optional[List[List[int]]] = None,
- word_labels: Optional[List[int]] = None,
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- if return_offsets_mapping:
- raise NotImplementedError(
- "return_offset_mapping is not available when using Python tokenizers. "
- "To use this feature, change your tokenizer to one deriving from "
- "transformers.PreTrainedTokenizerFast. "
- "More information on available tokenizers at "
- "https://github.com/huggingface/transformers/pull/2674"
- )
- return self.prepare_for_model(
- text=text,
- text_pair=text_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding=padding_strategy.value,
- truncation=truncation_strategy.value,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- prepend_batch_axis=True,
- return_attention_mask=return_attention_mask,
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- verbose=verbose,
- )
- @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
- def prepare_for_model(
- self,
- text: Union[TextInput, PreTokenizedInput],
- text_pair: Optional[PreTokenizedInput] = None,
- boxes: Optional[List[List[int]]] = None,
- word_labels: Optional[List[int]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- prepend_batch_axis: bool = False,
- **kwargs,
- ) -> BatchEncoding:
- """
- Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
- truncates sequences if overflowing while taking into account the special tokens and manages a moving window
- (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and
- *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a
- combination of arguments will raise an error.
- Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
- token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
- labeled with -100, such that they will be ignored by the loss function.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
- text_pair (`List[str]` or `List[int]`, *optional*):
- Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
- list of list of strings (words of a batch of examples).
- """
- # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
- padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- pad_to_multiple_of=pad_to_multiple_of,
- verbose=verbose,
- **kwargs,
- )
- tokens = []
- pair_tokens = []
- token_boxes = []
- pair_token_boxes = []
- labels = []
- if text_pair is None:
- if word_labels is None:
- # CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
- for word, box in zip(text, boxes):
- if len(word) < 1: # skip empty words
- continue
- word_tokens = self.tokenize(word)
- tokens.extend(word_tokens)
- token_boxes.extend([box] * len(word_tokens))
- else:
- # CASE 2: token classification (training)
- for word, box, label in zip(text, boxes, word_labels):
- if len(word) < 1: # skip empty words
- continue
- word_tokens = self.tokenize(word)
- tokens.extend(word_tokens)
- token_boxes.extend([box] * len(word_tokens))
- if self.only_label_first_subword:
- # Use the real label id for the first token of the word, and padding ids for the remaining tokens
- labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
- else:
- labels.extend([label] * len(word_tokens))
- else:
- # CASE 3: document visual question answering (inference)
- # text = question
- # text_pair = words
- tokens = self.tokenize(text)
- token_boxes = [self.pad_token_box for _ in range(len(tokens))]
- for word, box in zip(text_pair, boxes):
- if len(word) < 1: # skip empty words
- continue
- word_tokens = self.tokenize(word)
- pair_tokens.extend(word_tokens)
- pair_token_boxes.extend([box] * len(word_tokens))
- # Create ids + pair_ids
- ids = self.convert_tokens_to_ids(tokens)
- pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
- if (
- return_overflowing_tokens
- and truncation_strategy == TruncationStrategy.LONGEST_FIRST
- and pair_ids is not None
- ):
- raise ValueError(
- "Not possible to return overflowing tokens for pair of sequences with the "
- "`longest_first`. Please select another truncation strategy than `longest_first`, "
- "for instance `only_second` or `only_first`."
- )
- # Compute the total size of the returned encodings
- pair = bool(pair_ids is not None)
- len_ids = len(ids)
- len_pair_ids = len(pair_ids) if pair else 0
- total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
- # Truncation: Handle max sequence length
- overflowing_tokens = []
- overflowing_token_boxes = []
- overflowing_labels = []
- if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
- (
- ids,
- token_boxes,
- pair_ids,
- pair_token_boxes,
- labels,
- overflowing_tokens,
- overflowing_token_boxes,
- overflowing_labels,
- ) = self.truncate_sequences(
- ids,
- token_boxes,
- pair_ids=pair_ids,
- pair_token_boxes=pair_token_boxes,
- labels=labels,
- num_tokens_to_remove=total_len - max_length,
- truncation_strategy=truncation_strategy,
- stride=stride,
- )
- if return_token_type_ids and not add_special_tokens:
- raise ValueError(
- "Asking to return token_type_ids while setting add_special_tokens to False "
- "results in an undefined behavior. Please set add_special_tokens to True or "
- "set return_token_type_ids to None."
- )
- # Load from model defaults
- if return_token_type_ids is None:
- return_token_type_ids = "token_type_ids" in self.model_input_names
- if return_attention_mask is None:
- return_attention_mask = "attention_mask" in self.model_input_names
- encoded_inputs = {}
- if return_overflowing_tokens:
- encoded_inputs["overflowing_tokens"] = overflowing_tokens
- encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
- encoded_inputs["overflowing_labels"] = overflowing_labels
- encoded_inputs["num_truncated_tokens"] = total_len - max_length
- # Add special tokens
- if add_special_tokens:
- sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
- token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
- token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
- if pair_token_boxes:
- pair_token_boxes = [self.sep_token_box] + pair_token_boxes + [self.sep_token_box]
- token_boxes = token_boxes + pair_token_boxes if pair else token_boxes
- if labels:
- labels = [self.pad_token_label] + labels + [self.pad_token_label]
- else:
- sequence = ids + pair_ids if pair else ids
- token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
- token_boxes = token_boxes + pair_token_boxes if pair else token_boxes
- # Build output dictionary
- encoded_inputs["input_ids"] = sequence
- encoded_inputs["bbox"] = token_boxes
- if return_token_type_ids:
- encoded_inputs["token_type_ids"] = token_type_ids
- if return_special_tokens_mask:
- if add_special_tokens:
- encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
- else:
- encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
- if labels:
- encoded_inputs["labels"] = labels
- # Check lengths
- self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
- # Padding
- if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
- encoded_inputs = self.pad(
- encoded_inputs,
- max_length=max_length,
- padding=padding_strategy.value,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- )
- if return_length:
- encoded_inputs["length"] = len(encoded_inputs["input_ids"])
- batch_outputs = BatchEncoding(
- encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
- )
- return batch_outputs
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.truncate_sequences
- def truncate_sequences(
- self,
- ids: List[int],
- token_boxes: List[List[int]],
- pair_ids: Optional[List[int]] = None,
- pair_token_boxes: Optional[List[List[int]]] = None,
- labels: Optional[List[int]] = None,
- num_tokens_to_remove: int = 0,
- truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
- stride: int = 0,
- ) -> Tuple[List[int], List[int], List[int]]:
- """
- Truncates a sequence pair in-place following the strategy.
- Args:
- ids (`List[int]`):
- Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
- `convert_tokens_to_ids` methods.
- token_boxes (`List[List[int]]`):
- Bounding boxes of the first sequence.
- pair_ids (`List[int]`, *optional*):
- Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
- and `convert_tokens_to_ids` methods.
- pair_token_boxes (`List[List[int]]`, *optional*):
- Bounding boxes of the second sequence.
- labels (`List[int]`, *optional*):
- Labels of the first sequence (for token classification tasks).
- num_tokens_to_remove (`int`, *optional*, defaults to 0):
- Number of tokens to remove using the truncation strategy.
- truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
- The strategy to follow for truncation. Can be:
- - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will truncate
- token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
- batch of pairs) is provided.
- - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
- than the model maximum admissible input size).
- stride (`int`, *optional*, defaults to 0):
- If set to a positive number, the overflowing tokens returned will contain some tokens from the main
- sequence returned. The value of this argument defines the number of additional tokens.
- Returns:
- `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
- overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
- of sequences (or a batch of pairs) is provided.
- """
- if num_tokens_to_remove <= 0:
- return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
- if not isinstance(truncation_strategy, TruncationStrategy):
- truncation_strategy = TruncationStrategy(truncation_strategy)
- overflowing_tokens = []
- overflowing_token_boxes = []
- overflowing_labels = []
- if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
- truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
- ):
- if len(ids) > num_tokens_to_remove:
- window_len = min(len(ids), stride + num_tokens_to_remove)
- overflowing_tokens = ids[-window_len:]
- overflowing_token_boxes = token_boxes[-window_len:]
- overflowing_labels = labels[-window_len:]
- ids = ids[:-num_tokens_to_remove]
- token_boxes = token_boxes[:-num_tokens_to_remove]
- labels = labels[:-num_tokens_to_remove]
- else:
- error_msg = (
- f"We need to remove {num_tokens_to_remove} to truncate the input "
- f"but the first sequence has a length {len(ids)}. "
- )
- if truncation_strategy == TruncationStrategy.ONLY_FIRST:
- error_msg = (
- error_msg + "Please select another truncation strategy than "
- f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
- )
- logger.error(error_msg)
- elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
- logger.warning(
- "Be aware, overflowing tokens are not returned for the setting you have chosen,"
- f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
- "truncation strategy. So the returned list will always be empty even if some "
- "tokens have been removed."
- )
- for _ in range(num_tokens_to_remove):
- if pair_ids is None or len(ids) > len(pair_ids):
- ids = ids[:-1]
- token_boxes = token_boxes[:-1]
- labels = labels[:-1]
- else:
- pair_ids = pair_ids[:-1]
- pair_token_boxes = pair_token_boxes[:-1]
- elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
- if len(pair_ids) > num_tokens_to_remove:
- window_len = min(len(pair_ids), stride + num_tokens_to_remove)
- overflowing_tokens = pair_ids[-window_len:]
- overflowing_token_boxes = pair_token_boxes[-window_len:]
- pair_ids = pair_ids[:-num_tokens_to_remove]
- pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
- else:
- logger.error(
- f"We need to remove {num_tokens_to_remove} to truncate the input "
- f"but the second sequence has a length {len(pair_ids)}. "
- f"Please select another truncation strategy than {truncation_strategy}, "
- "for instance 'longest_first' or 'only_first'."
- )
- return (
- ids,
- token_boxes,
- pair_ids,
- pair_token_boxes,
- labels,
- overflowing_tokens,
- overflowing_token_boxes,
- overflowing_labels,
- )
- # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._pad
- def _pad(
- self,
- encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
- max_length: Optional[int] = None,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- ) -> dict:
- """
- Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
- Args:
- encoded_inputs:
- Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
- max_length: maximum length of the returned list and optionally padding length (see below).
- Will truncate by taking into account the special tokens.
- padding_strategy: PaddingStrategy to use for padding.
- - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- - PaddingStrategy.DO_NOT_PAD: Do not pad
- The tokenizer padding sides are defined in self.padding_side:
- - 'left': pads on the left of the sequences
- - 'right': pads on the right of the sequences
- pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
- This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
- `>= 7.5` (Volta).
- padding_side:
- The side on which the model should have padding applied. Should be selected between ['right', 'left'].
- Default value is picked from the class attribute of the same name.
- return_attention_mask:
- (optional) Set to False to avoid returning attention mask (default: set to model specifics)
- """
- # Load from model defaults
- if return_attention_mask is None:
- return_attention_mask = "attention_mask" in self.model_input_names
- required_input = encoded_inputs[self.model_input_names[0]]
- if padding_strategy == PaddingStrategy.LONGEST:
- max_length = len(required_input)
- if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
- max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
- needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
- # Initialize attention mask if not present.
- if return_attention_mask and "attention_mask" not in encoded_inputs:
- encoded_inputs["attention_mask"] = [1] * len(required_input)
- if needs_to_be_padded:
- difference = max_length - len(required_input)
- padding_side = padding_side if padding_side is not None else self.padding_side
- if padding_side == "right":
- if return_attention_mask:
- encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
- if "token_type_ids" in encoded_inputs:
- encoded_inputs["token_type_ids"] = (
- encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
- )
- if "bbox" in encoded_inputs:
- encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
- if "labels" in encoded_inputs:
- encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
- if "special_tokens_mask" in encoded_inputs:
- encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
- encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
- elif padding_side == "left":
- if return_attention_mask:
- encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
- if "token_type_ids" in encoded_inputs:
- encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
- "token_type_ids"
- ]
- if "bbox" in encoded_inputs:
- encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
- if "labels" in encoded_inputs:
- encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
- if "special_tokens_mask" in encoded_inputs:
- encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
- encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
- else:
- raise ValueError("Invalid padding strategy:" + str(padding_side))
- return encoded_inputs
|