| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186 |
- # coding=utf-8
- # Copyright 2021 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License
- """Tokenization classes for LayoutXLM model."""
- import os
- from shutil import copyfile
- from typing import Any, Dict, List, Optional, Tuple, Union
- import sentencepiece as spm
- from ...tokenization_utils import AddedToken, PreTrainedTokenizer
- from ...tokenization_utils_base import (
- BatchEncoding,
- EncodedInput,
- PreTokenizedInput,
- TextInput,
- TextInputPair,
- TruncationStrategy,
- )
- from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging
- from ..xlm_roberta.tokenization_xlm_roberta import (
- SPIECE_UNDERLINE,
- VOCAB_FILES_NAMES,
- )
- logger = logging.get_logger(__name__)
- LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r"""
- add_special_tokens (`bool`, *optional*, defaults to `True`):
- Whether or not to encode the sequences with the special tokens relative to their model.
- padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
- Activates and controls padding. Accepts the following values:
- - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
- sequence if provided).
- - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
- acceptable input length for the model if that argument is not provided.
- - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
- lengths).
- truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
- Activates and controls truncation. Accepts the following values:
- - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
- to the maximum acceptable input length for the model if that argument is not provided. This will
- truncate token by token, removing a token from the longest sequence in the pair if a pair of
- sequences (or a batch of pairs) is provided.
- - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
- greater than the model maximum admissible input size).
- max_length (`int`, *optional*):
- Controls the maximum length to use by one of the truncation/padding parameters.
- If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
- is required by one of the truncation/padding parameters. If the model has no specific maximum input
- length (like XLNet) truncation/padding to a maximum length will be deactivated.
- stride (`int`, *optional*, defaults to 0):
- If set to a number along with `max_length`, the overflowing tokens returned when
- `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
- returned to provide some overlap between truncated and overflowing sequences. The value of this
- argument defines the number of overlapping tokens.
- pad_to_multiple_of (`int`, *optional*):
- If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
- the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
- return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
- If set, will return tensors instead of list of python integers. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return Numpy `np.ndarray` objects.
- return_token_type_ids (`bool`, *optional*):
- Whether to return token type IDs. If left to the default, will return the token type IDs according to
- the specific tokenizer's default, defined by the `return_outputs` attribute.
- [What are token type IDs?](../glossary#token-type-ids)
- return_attention_mask (`bool`, *optional*):
- Whether to return the attention mask. If left to the default, will return the attention mask according
- to the specific tokenizer's default, defined by the `return_outputs` attribute.
- [What are attention masks?](../glossary#attention-mask)
- return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
- of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
- of returning overflowing tokens.
- return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
- Whether or not to return special tokens mask information.
- return_offsets_mapping (`bool`, *optional*, defaults to `False`):
- Whether or not to return `(char_start, char_end)` for each token.
- This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
- Python's tokenizer, this method will raise `NotImplementedError`.
- return_length (`bool`, *optional*, defaults to `False`):
- Whether or not to return the lengths of the encoded inputs.
- verbose (`bool`, *optional*, defaults to `True`):
- Whether or not to print more information and warnings.
- **kwargs: passed to the `self.tokenize()` method
- Return:
- [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- - **input_ids** -- List of token ids to be fed to a model.
- [What are input IDs?](../glossary#input-ids)
- - **bbox** -- List of bounding boxes to be fed to a model.
- - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
- if *"token_type_ids"* is in `self.model_input_names`).
- [What are token type IDs?](../glossary#token-type-ids)
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
- [What are attention masks?](../glossary#attention-mask)
- - **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
- - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
- `return_overflowing_tokens=True`).
- - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
- `return_overflowing_tokens=True`).
- - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
- regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
- - **length** -- The length of the inputs (when `return_length=True`).
- """
- class LayoutXLMTokenizer(PreTrainedTokenizer):
- """
- Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
- [SentencePiece](https://github.com/google/sentencepiece).
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- bos_token (`str`, *optional*, defaults to `"<s>"`):
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the beginning of
- sequence. The token used is the `cls_token`.
- </Tip>
- eos_token (`str`, *optional*, defaults to `"</s>"`):
- The end of sequence token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the end of sequence.
- The token used is the `sep_token`.
- </Tip>
- sep_token (`str`, *optional*, defaults to `"</s>"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- cls_token (`str`, *optional*, defaults to `"<s>"`):
- The classifier token which is used when doing sequence classification (classification of the whole sequence
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- pad_token (`str`, *optional*, defaults to `"<pad>"`):
- The token used for padding, for example when batching sequences of different lengths.
- mask_token (`str`, *optional*, defaults to `"<mask>"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
- The bounding box to use for the special [CLS] token.
- sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
- The bounding box to use for the special [SEP] token.
- pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
- The bounding box to use for the special [PAD] token.
- pad_token_label (`int`, *optional*, defaults to -100):
- The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
- CrossEntropyLoss.
- only_label_first_subword (`bool`, *optional*, defaults to `True`):
- Whether or not to only label the first subword, in case word labels are provided.
- sp_model_kwargs (`dict`, *optional*):
- Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
- SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
- to set:
- - `enable_sampling`: Enable subword regularization.
- - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- - `nbest_size = {0,1}`: No sampling is performed.
- - `nbest_size > 1`: samples from the nbest_size results.
- - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
- using forward-filtering-and-backward-sampling algorithm.
- - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
- BPE-dropout.
- Attributes:
- sp_model (`SentencePieceProcessor`):
- The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- def __init__(
- self,
- vocab_file,
- bos_token="<s>",
- eos_token="</s>",
- sep_token="</s>",
- cls_token="<s>",
- unk_token="<unk>",
- pad_token="<pad>",
- mask_token="<mask>",
- cls_token_box=[0, 0, 0, 0],
- sep_token_box=[1000, 1000, 1000, 1000],
- pad_token_box=[0, 0, 0, 0],
- pad_token_label=-100,
- only_label_first_subword=True,
- sp_model_kwargs: Optional[Dict[str, Any]] = None,
- **kwargs,
- ) -> None:
- # Mask token behave like a normal word, i.e. include the space before it
- mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
- self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
- self.sp_model.Load(str(vocab_file))
- self.vocab_file = vocab_file
- # Original fairseq vocab and spm vocab must be "aligned":
- # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
- # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
- # Mimic fairseq token-to-id alignment for the first 4 token
- self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
- # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
- self.fairseq_offset = 1
- self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
- self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
- # additional properties
- self.cls_token_box = cls_token_box
- self.sep_token_box = sep_token_box
- self.pad_token_box = pad_token_box
- self.pad_token_label = pad_token_label
- self.only_label_first_subword = only_label_first_subword
- super().__init__(
- bos_token=bos_token,
- eos_token=eos_token,
- unk_token=unk_token,
- sep_token=sep_token,
- cls_token=cls_token,
- pad_token=pad_token,
- mask_token=mask_token,
- cls_token_box=cls_token_box,
- sep_token_box=sep_token_box,
- pad_token_box=pad_token_box,
- pad_token_label=pad_token_label,
- only_label_first_subword=only_label_first_subword,
- sp_model_kwargs=self.sp_model_kwargs,
- **kwargs,
- )
- def __getstate__(self):
- state = self.__dict__.copy()
- state["sp_model"] = None
- state["sp_model_proto"] = self.sp_model.serialized_model_proto()
- return state
- def __setstate__(self, d):
- self.__dict__ = d
- # for backward compatibility
- if not hasattr(self, "sp_model_kwargs"):
- self.sp_model_kwargs = {}
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
- self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. An XLM-RoBERTa sequence has the following format:
- - single sequence: `<s> X </s>`
- - pair of sequences: `<s> A </s></s> B </s>`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
- cls = [self.cls_token_id]
- sep = [self.sep_token_id]
- return cls + token_ids_0 + sep + sep + token_ids_1 + sep
- def get_special_tokens_mask(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- if token_ids_1 is None:
- return [1] + ([0] * len(token_ids_0)) + [1]
- return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
- not make use of token type ids, therefore a list of zeros is returned.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of zeros.
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
- @property
- def vocab_size(self):
- return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token
- def get_vocab(self):
- vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
- vocab.update(self.added_tokens_encoder)
- return vocab
- def _tokenize(self, text: str) -> List[str]:
- return self.sp_model.encode(text, out_type=str)
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- if token in self.fairseq_tokens_to_ids:
- return self.fairseq_tokens_to_ids[token]
- spm_id = self.sp_model.PieceToId(token)
- # Need to return unknown token if the SP model returned 0
- return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- if index in self.fairseq_ids_to_tokens:
- return self.fairseq_ids_to_tokens[index]
- return self.sp_model.IdToPiece(index - self.fairseq_offset)
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (strings for sub-words) in a single string."""
- out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
- return out_string
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- out_vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
- copyfile(self.vocab_file, out_vocab_file)
- elif not os.path.isfile(self.vocab_file):
- with open(out_vocab_file, "wb") as fi:
- content_spiece_model = self.sp_model.serialized_model_proto()
- fi.write(content_spiece_model)
- return (out_vocab_file,)
- @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
- def __call__(
- self,
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
- text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
- boxes: Union[List[List[int]], List[List[List[int]]]] = None,
- word_labels: Optional[Union[List[int], List[List[int]]]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- """
- Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
- sequences with word-level normalized bounding boxes and optional labels.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
- (words of a single example or questions of a batch of examples) or a list of list of strings (batch of
- words).
- text_pair (`List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
- (pretokenized string).
- boxes (`List[List[int]]`, `List[List[List[int]]]`):
- Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
- word_labels (`List[int]`, `List[List[int]]`, *optional*):
- Word-level integer labels (for token classification tasks such as FUNSD, CORD).
- """
- # Input type checking for clearer error
- def _is_valid_text_input(t):
- if isinstance(t, str):
- # Strings are fine
- return True
- elif isinstance(t, (list, tuple)):
- # List are fine as long as they are...
- if len(t) == 0:
- # ... empty
- return True
- elif isinstance(t[0], str):
- # ... list of strings
- return True
- elif isinstance(t[0], (list, tuple)):
- # ... list with an empty list or with a list of strings
- return len(t[0]) == 0 or isinstance(t[0][0], str)
- else:
- return False
- else:
- return False
- if text_pair is not None:
- # in case text + text_pair are provided, text = questions, text_pair = words
- if not _is_valid_text_input(text):
- raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
- if not isinstance(text_pair, (list, tuple)):
- raise ValueError(
- "words must of type `List[str]` (single pretokenized example), "
- "or `List[List[str]]` (batch of pretokenized examples)."
- )
- else:
- # in case only text is provided => must be words
- if not isinstance(text, (list, tuple)):
- raise ValueError(
- "Words must of type `List[str]` (single pretokenized example), "
- "or `List[List[str]]` (batch of pretokenized examples)."
- )
- if text_pair is not None:
- is_batched = isinstance(text, (list, tuple))
- else:
- is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
- words = text if text_pair is None else text_pair
- if boxes is None:
- raise ValueError("You must provide corresponding bounding boxes")
- if is_batched:
- if len(words) != len(boxes):
- raise ValueError("You must provide words and boxes for an equal amount of examples")
- for words_example, boxes_example in zip(words, boxes):
- if len(words_example) != len(boxes_example):
- raise ValueError("You must provide as many words as there are bounding boxes")
- else:
- if len(words) != len(boxes):
- raise ValueError("You must provide as many words as there are bounding boxes")
- if is_batched:
- if text_pair is not None and len(text) != len(text_pair):
- raise ValueError(
- f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
- f" {len(text_pair)}."
- )
- batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
- is_pair = bool(text_pair is not None)
- return self.batch_encode_plus(
- batch_text_or_text_pairs=batch_text_or_text_pairs,
- is_pair=is_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- else:
- return self.encode_plus(
- text=text,
- text_pair=text_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- def _batch_encode_plus(
- self,
- batch_text_or_text_pairs: Union[
- List[TextInput],
- List[TextInputPair],
- List[PreTokenizedInput],
- ],
- is_pair: bool = None,
- boxes: Optional[List[List[List[int]]]] = None,
- word_labels: Optional[List[List[int]]] = None,
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- if return_offsets_mapping:
- raise NotImplementedError(
- "return_offset_mapping is not available when using Python tokenizers. "
- "To use this feature, change your tokenizer to one deriving from "
- "transformers.PreTrainedTokenizerFast."
- )
- batch_outputs = self._batch_prepare_for_model(
- batch_text_or_text_pairs=batch_text_or_text_pairs,
- is_pair=is_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding_strategy=padding_strategy,
- truncation_strategy=truncation_strategy,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- return_tensors=return_tensors,
- verbose=verbose,
- )
- return BatchEncoding(batch_outputs)
- @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
- def _batch_prepare_for_model(
- self,
- batch_text_or_text_pairs,
- is_pair: bool = None,
- boxes: Optional[List[List[int]]] = None,
- word_labels: Optional[List[List[int]]] = None,
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[str] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- ) -> BatchEncoding:
- """
- Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
- adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
- manages a moving window (with user defined stride) for overflowing tokens
- Args:
- batch_ids_pairs: list of tokenized input ids or input ids pairs
- """
- batch_outputs = {}
- for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
- batch_text_or_text_pair, boxes_example = example
- outputs = self.prepare_for_model(
- batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
- batch_text_or_text_pair[1] if is_pair else None,
- boxes_example,
- word_labels=word_labels[idx] if word_labels is not None else None,
- add_special_tokens=add_special_tokens,
- padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
- truncation=truncation_strategy.value,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=None, # we pad in batch afterward
- padding_side=None, # we pad in batch afterward
- return_attention_mask=False, # we pad in batch afterward
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- return_tensors=None, # We convert the whole batch to tensors at the end
- prepend_batch_axis=False,
- verbose=verbose,
- )
- for key, value in outputs.items():
- if key not in batch_outputs:
- batch_outputs[key] = []
- batch_outputs[key].append(value)
- batch_outputs = self.pad(
- batch_outputs,
- padding=padding_strategy.value,
- max_length=max_length,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- )
- batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
- return batch_outputs
- def _encode_plus(
- self,
- text: Union[TextInput, PreTokenizedInput],
- text_pair: Optional[PreTokenizedInput] = None,
- boxes: Optional[List[List[int]]] = None,
- word_labels: Optional[List[int]] = None,
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- if return_offsets_mapping:
- raise NotImplementedError(
- "return_offset_mapping is not available when using Python tokenizers. "
- "To use this feature, change your tokenizer to one deriving from "
- "transformers.PreTrainedTokenizerFast. "
- "More information on available tokenizers at "
- "https://github.com/huggingface/transformers/pull/2674"
- )
- return self.prepare_for_model(
- text=text,
- text_pair=text_pair,
- boxes=boxes,
- word_labels=word_labels,
- add_special_tokens=add_special_tokens,
- padding=padding_strategy.value,
- truncation=truncation_strategy.value,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- prepend_batch_axis=True,
- return_attention_mask=return_attention_mask,
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- verbose=verbose,
- )
- @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
- def prepare_for_model(
- self,
- text: Union[TextInput, PreTokenizedInput],
- text_pair: Optional[PreTokenizedInput] = None,
- boxes: Optional[List[List[int]]] = None,
- word_labels: Optional[List[int]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- prepend_batch_axis: bool = False,
- **kwargs,
- ) -> BatchEncoding:
- """
- Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
- truncates sequences if overflowing while taking into account the special tokens and manages a moving window
- (with user defined stride) for overflowing tokens.
- Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
- token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
- labeled with -100, such that they will be ignored by the loss function.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
- text_pair (`List[str]` or `List[int]`, *optional*):
- Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
- list of list of strings (words of a batch of examples).
- """
- # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
- padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- pad_to_multiple_of=pad_to_multiple_of,
- verbose=verbose,
- **kwargs,
- )
- tokens = []
- pair_tokens = []
- token_boxes = []
- pair_token_boxes = []
- labels = []
- if text_pair is None:
- if word_labels is None:
- # CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
- for word, box in zip(text, boxes):
- if len(word) < 1: # skip empty words
- continue
- word_tokens = self.tokenize(word)
- tokens.extend(word_tokens)
- token_boxes.extend([box] * len(word_tokens))
- else:
- # CASE 2: token classification (training)
- for word, box, label in zip(text, boxes, word_labels):
- if len(word) < 1: # skip empty words
- continue
- word_tokens = self.tokenize(word)
- tokens.extend(word_tokens)
- token_boxes.extend([box] * len(word_tokens))
- if self.only_label_first_subword:
- # Use the real label id for the first token of the word, and padding ids for the remaining tokens
- labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
- else:
- labels.extend([label] * len(word_tokens))
- else:
- # CASE 3: document visual question answering (inference)
- # text = question
- # text_pair = words
- tokens = self.tokenize(text)
- token_boxes = [self.pad_token_box for _ in range(len(tokens))] + [self.sep_token_box]
- for word, box in zip(text_pair, boxes):
- if len(word) < 1: # skip empty words
- continue
- word_tokens = self.tokenize(word)
- pair_tokens.extend(word_tokens)
- pair_token_boxes.extend([box] * len(word_tokens))
- # Create ids + pair_ids
- ids = self.convert_tokens_to_ids(tokens)
- pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
- # Compute the total size of the returned encodings
- pair = bool(pair_ids is not None)
- len_ids = len(ids)
- len_pair_ids = len(pair_ids) if pair else 0
- total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
- # Truncation: Handle max sequence length
- overflowing_tokens = []
- overflowing_token_boxes = []
- overflowing_labels = []
- if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
- (
- ids,
- token_boxes,
- pair_ids,
- pair_token_boxes,
- labels,
- overflowing_tokens,
- overflowing_token_boxes,
- overflowing_labels,
- ) = self.truncate_sequences(
- ids,
- token_boxes,
- pair_ids=pair_ids,
- pair_token_boxes=pair_token_boxes,
- labels=labels,
- num_tokens_to_remove=total_len - max_length,
- truncation_strategy=truncation_strategy,
- stride=stride,
- )
- if return_token_type_ids and not add_special_tokens:
- raise ValueError(
- "Asking to return token_type_ids while setting add_special_tokens to False "
- "results in an undefined behavior. Please set add_special_tokens to True or "
- "set return_token_type_ids to None."
- )
- # Load from model defaults
- if return_token_type_ids is None:
- return_token_type_ids = "token_type_ids" in self.model_input_names
- if return_attention_mask is None:
- return_attention_mask = "attention_mask" in self.model_input_names
- encoded_inputs = {}
- if return_overflowing_tokens:
- encoded_inputs["overflowing_tokens"] = overflowing_tokens
- encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
- encoded_inputs["overflowing_labels"] = overflowing_labels
- encoded_inputs["num_truncated_tokens"] = total_len - max_length
- # Add special tokens
- if add_special_tokens:
- sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
- token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
- token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
- if pair_token_boxes:
- pair_token_boxes = pair_token_boxes + [self.sep_token_box]
- if labels:
- labels = [self.pad_token_label] + labels + [self.pad_token_label]
- else:
- sequence = ids + pair_ids if pair else ids
- token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
- # Build output dictionary
- encoded_inputs["input_ids"] = sequence
- encoded_inputs["bbox"] = token_boxes + pair_token_boxes
- if return_token_type_ids:
- encoded_inputs["token_type_ids"] = token_type_ids
- if return_special_tokens_mask:
- if add_special_tokens:
- encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
- else:
- encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
- if labels:
- encoded_inputs["labels"] = labels
- # Check lengths
- self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
- # Padding
- if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
- encoded_inputs = self.pad(
- encoded_inputs,
- max_length=max_length,
- padding=padding_strategy.value,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- )
- if return_length:
- encoded_inputs["length"] = len(encoded_inputs["input_ids"])
- batch_outputs = BatchEncoding(
- encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
- )
- return batch_outputs
- def truncate_sequences(
- self,
- ids: List[int],
- token_boxes: List[List[int]],
- pair_ids: Optional[List[int]] = None,
- pair_token_boxes: Optional[List[List[int]]] = None,
- labels: Optional[List[int]] = None,
- num_tokens_to_remove: int = 0,
- truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
- stride: int = 0,
- ) -> Tuple[List[int], List[int], List[int]]:
- """
- Truncates a sequence pair in-place following the strategy.
- Args:
- ids (`List[int]`):
- Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
- `convert_tokens_to_ids` methods.
- token_boxes (`List[List[int]]`):
- Bounding boxes of the first sequence.
- pair_ids (`List[int]`, *optional*):
- Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
- and `convert_tokens_to_ids` methods.
- pair_token_boxes (`List[List[int]]`, *optional*):
- Bounding boxes of the second sequence.
- labels (`List[int]`, *optional*):
- Labels of the first sequence (for token classification tasks).
- num_tokens_to_remove (`int`, *optional*, defaults to 0):
- Number of tokens to remove using the truncation strategy.
- truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
- The strategy to follow for truncation. Can be:
- - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will truncate
- token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
- batch of pairs) is provided.
- - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
- maximum acceptable input length for the model if that argument is not provided. This will only
- truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
- than the model maximum admissible input size).
- stride (`int`, *optional*, defaults to 0):
- If set to a positive number, the overflowing tokens returned will contain some tokens from the main
- sequence returned. The value of this argument defines the number of additional tokens.
- Returns:
- `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
- overflowing tokens.
- """
- if num_tokens_to_remove <= 0:
- return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
- if not isinstance(truncation_strategy, TruncationStrategy):
- truncation_strategy = TruncationStrategy(truncation_strategy)
- overflowing_tokens = []
- overflowing_token_boxes = []
- overflowing_labels = []
- if truncation_strategy == TruncationStrategy.LONGEST_FIRST:
- for _ in range(num_tokens_to_remove):
- if pair_ids is None or len(ids) > len(pair_ids):
- if not overflowing_tokens:
- window_len = min(len(ids), stride + 1)
- else:
- window_len = 1
- overflowing_tokens.extend(ids[-window_len:])
- overflowing_token_boxes.extend(token_boxes[-window_len:])
- overflowing_labels.extend(labels[-window_len:])
- ids = ids[:-1]
- token_boxes = token_boxes[:-1]
- labels = labels[:-1]
- else:
- if not overflowing_tokens:
- window_len = min(len(pair_ids), stride + 1)
- else:
- window_len = 1
- overflowing_tokens.extend(pair_ids[-window_len:])
- overflowing_token_boxes.extend(pair_token_boxes[-window_len:])
- pair_ids = pair_ids[:-1]
- pair_token_boxes = pair_token_boxes[:-1]
- elif truncation_strategy == TruncationStrategy.ONLY_FIRST:
- if len(ids) > num_tokens_to_remove:
- window_len = min(len(ids), stride + num_tokens_to_remove)
- overflowing_tokens = ids[-window_len:]
- overflowing_token_boxes = token_boxes[-window_len:]
- overflowing_labels = labels[-window_len:]
- ids = ids[:-num_tokens_to_remove]
- token_boxes = token_boxes[:-num_tokens_to_remove]
- labels = labels[:-num_tokens_to_remove]
- else:
- logger.error(
- f"We need to remove {num_tokens_to_remove} to truncate the input "
- f"but the first sequence has a length {len(ids)}. "
- f"Please select another truncation strategy than {truncation_strategy}, "
- "for instance 'longest_first' or 'only_second'."
- )
- elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
- if len(pair_ids) > num_tokens_to_remove:
- window_len = min(len(pair_ids), stride + num_tokens_to_remove)
- overflowing_tokens = pair_ids[-window_len:]
- overflowing_token_boxes = pair_token_boxes[-window_len:]
- pair_ids = pair_ids[:-num_tokens_to_remove]
- pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
- else:
- logger.error(
- f"We need to remove {num_tokens_to_remove} to truncate the input "
- f"but the second sequence has a length {len(pair_ids)}. "
- f"Please select another truncation strategy than {truncation_strategy}, "
- "for instance 'longest_first' or 'only_first'."
- )
- return (
- ids,
- token_boxes,
- pair_ids,
- pair_token_boxes,
- labels,
- overflowing_tokens,
- overflowing_token_boxes,
- overflowing_labels,
- )
- def _pad(
- self,
- encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
- max_length: Optional[int] = None,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- ) -> dict:
- """
- Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
- Args:
- encoded_inputs:
- Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
- max_length: maximum length of the returned list and optionally padding length (see below).
- Will truncate by taking into account the special tokens.
- padding_strategy: PaddingStrategy to use for padding.
- - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- - PaddingStrategy.DO_NOT_PAD: Do not pad
- The tokenizer padding sides are defined in self.padding_side:
- - 'left': pads on the left of the sequences
- - 'right': pads on the right of the sequences
- pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
- This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
- `>= 7.5` (Volta).
- padding_side (`str`, *optional*):
- The side on which the model should have padding applied. Should be selected between ['right', 'left'].
- Default value is picked from the class attribute of the same name.
- return_attention_mask:
- (optional) Set to False to avoid returning attention mask (default: set to model specifics)
- """
- # Load from model defaults
- if return_attention_mask is None:
- return_attention_mask = "attention_mask" in self.model_input_names
- required_input = encoded_inputs[self.model_input_names[0]]
- if padding_strategy == PaddingStrategy.LONGEST:
- max_length = len(required_input)
- if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
- max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
- needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
- # Initialize attention mask if not present.
- if return_attention_mask and "attention_mask" not in encoded_inputs:
- encoded_inputs["attention_mask"] = [1] * len(required_input)
- if needs_to_be_padded:
- difference = max_length - len(required_input)
- padding_side = padding_side if padding_side is not None else self.padding_side
- if padding_side == "right":
- if return_attention_mask:
- encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
- if "token_type_ids" in encoded_inputs:
- encoded_inputs["token_type_ids"] = (
- encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
- )
- if "bbox" in encoded_inputs:
- encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
- if "labels" in encoded_inputs:
- encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
- if "special_tokens_mask" in encoded_inputs:
- encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
- encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
- elif padding_side == "left":
- if return_attention_mask:
- encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
- if "token_type_ids" in encoded_inputs:
- encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
- "token_type_ids"
- ]
- if "bbox" in encoded_inputs:
- encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
- if "labels" in encoded_inputs:
- encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
- if "special_tokens_mask" in encoded_inputs:
- encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
- encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
- else:
- raise ValueError("Invalid padding strategy:" + str(padding_side))
- return encoded_inputs
|