| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663 |
- # coding=utf-8
- # Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """TF 2.0 LED model."""
- from __future__ import annotations
- import random
- from dataclasses import dataclass
- from typing import List, Optional, Tuple, Union
- import numpy as np
- import tensorflow as tf
- from ...activations_tf import get_tf_activation
- from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions
- # Public API
- from ...modeling_tf_utils import (
- TFModelInputType,
- TFPreTrainedModel,
- get_initializer,
- keras,
- keras_serializable,
- unpack_inputs,
- )
- from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
- from ...utils import (
- ModelOutput,
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from .configuration_led import LEDConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "allenai/led-base-16384"
- _CONFIG_FOR_DOC = "LEDConfig"
- LARGE_NEGATIVE = -1e8
- # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
- def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
- pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
- decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
- start_tokens = tf.fill(
- (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
- )
- shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
- # replace possible -100 values in labels by `pad_token_id`
- shifted_input_ids = tf.where(
- shifted_input_ids == -100,
- tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
- shifted_input_ids,
- )
- # "Verify that `labels` has only positive values and -100"
- assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
- # Make sure the assertion op is called by wrapping the result in an identity no-op
- with tf.control_dependencies([assert_gte0]):
- shifted_input_ids = tf.identity(shifted_input_ids)
- return shifted_input_ids
- # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
- def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
- """
- Make causal mask used for bi-directional self-attention.
- """
- bsz = input_ids_shape[0]
- tgt_len = input_ids_shape[1]
- mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
- mask_cond = tf.range(shape_list(mask)[-1])
- mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
- if past_key_values_length > 0:
- mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
- return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
- # Copied from transformers.models.bart.modeling_tf_bart._expand_mask
- def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
- """
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
- """
- src_len = shape_list(mask)[1]
- tgt_len = tgt_len if tgt_len is not None else src_len
- one_cst = tf.constant(1.0)
- mask = tf.cast(mask, dtype=one_cst.dtype)
- expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
- return (one_cst - expanded_mask) * LARGE_NEGATIVE
- class TFLEDLearnedPositionalEmbedding(keras.layers.Embedding):
- """
- This module learns positional embeddings up to a fixed maximum size.
- """
- def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
- super().__init__(num_embeddings, embedding_dim, **kwargs)
- def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0):
- """Input is expected to be of size [bsz x seqlen]."""
- seq_len = input_shape[1]
- position_ids = tf.range(seq_len, delta=1, name="range")
- position_ids += past_key_values_length
- return super().call(tf.cast(position_ids, dtype=tf.int32))
- # Copied from transformers.models.longformer.modeling_tf_longformer.TFLongformerSelfAttention with TFLongformer->TFLEDEncoder
- class TFLEDEncoderSelfAttention(keras.layers.Layer):
- def __init__(self, config, layer_id, **kwargs):
- super().__init__(**kwargs)
- self.config = config
- if config.hidden_size % config.num_attention_heads != 0:
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads}"
- )
- self.num_heads = config.num_attention_heads
- self.head_dim = int(config.hidden_size / config.num_attention_heads)
- self.embed_dim = config.hidden_size
- self.query = keras.layers.Dense(
- self.embed_dim,
- kernel_initializer=get_initializer(config.initializer_range),
- name="query",
- )
- self.key = keras.layers.Dense(
- self.embed_dim,
- kernel_initializer=get_initializer(config.initializer_range),
- name="key",
- )
- self.value = keras.layers.Dense(
- self.embed_dim,
- kernel_initializer=get_initializer(config.initializer_range),
- name="value",
- )
- # separate projection layers for tokens with global attention
- self.query_global = keras.layers.Dense(
- self.embed_dim,
- kernel_initializer=get_initializer(config.initializer_range),
- name="query_global",
- )
- self.key_global = keras.layers.Dense(
- self.embed_dim,
- kernel_initializer=get_initializer(config.initializer_range),
- name="key_global",
- )
- self.value_global = keras.layers.Dense(
- self.embed_dim,
- kernel_initializer=get_initializer(config.initializer_range),
- name="value_global",
- )
- self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
- self.global_dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
- self.layer_id = layer_id
- attention_window = config.attention_window[self.layer_id]
- assert (
- attention_window % 2 == 0
- ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
- assert (
- attention_window > 0
- ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
- self.one_sided_attn_window_size = attention_window // 2
- def build(self, input_shape=None):
- if not self.built:
- with tf.name_scope("query_global"):
- self.query_global.build((self.config.hidden_size,))
- with tf.name_scope("key_global"):
- self.key_global.build((self.config.hidden_size,))
- with tf.name_scope("value_global"):
- self.value_global.build((self.config.hidden_size,))
- if self.built:
- return
- self.built = True
- if getattr(self, "query", None) is not None:
- with tf.name_scope(self.query.name):
- self.query.build([None, None, self.config.hidden_size])
- if getattr(self, "key", None) is not None:
- with tf.name_scope(self.key.name):
- self.key.build([None, None, self.config.hidden_size])
- if getattr(self, "value", None) is not None:
- with tf.name_scope(self.value.name):
- self.value.build([None, None, self.config.hidden_size])
- if getattr(self, "query_global", None) is not None:
- with tf.name_scope(self.query_global.name):
- self.query_global.build([None, None, self.config.hidden_size])
- if getattr(self, "key_global", None) is not None:
- with tf.name_scope(self.key_global.name):
- self.key_global.build([None, None, self.config.hidden_size])
- if getattr(self, "value_global", None) is not None:
- with tf.name_scope(self.value_global.name):
- self.value_global.build([None, None, self.config.hidden_size])
- def call(
- self,
- inputs,
- training=False,
- ):
- """
- LongformerSelfAttention expects *len(hidden_states)* to be multiple of *attention_window*. Padding to
- *attention_window* happens in LongformerModel.forward to avoid redoing the padding on each layer.
- The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to:
- - -10000: no attention
- - 0: local attention
- - +10000: global attention
- """
- # retrieve input args
- (
- hidden_states,
- attention_mask,
- layer_head_mask,
- is_index_masked,
- is_index_global_attn,
- is_global_attn,
- ) = inputs
- # project hidden states
- query_vectors = self.query(hidden_states)
- key_vectors = self.key(hidden_states)
- value_vectors = self.value(hidden_states)
- batch_size, seq_len, embed_dim = shape_list(hidden_states)
- tf.debugging.assert_equal(
- embed_dim,
- self.embed_dim,
- message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}",
- )
- # normalize query
- query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype))
- query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
- key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
- # attn_probs = (batch_size, seq_len, num_heads, window*2+1)
- attn_scores = self._sliding_chunks_query_key_matmul(
- query_vectors, key_vectors, self.one_sided_attn_window_size
- )
- # values to pad for attention probs
- remove_from_windowed_attention_mask = attention_mask != 0
- # cast to fp32/fp16 then replace 1's with -inf
- float_mask = tf.cast(remove_from_windowed_attention_mask, dtype=query_vectors.dtype) * LARGE_NEGATIVE
- # diagonal mask with zeros everywhere and -inf inplace of padding
- diagonal_mask = self._sliding_chunks_query_key_matmul(
- tf.ones(shape_list(attention_mask)),
- float_mask,
- self.one_sided_attn_window_size,
- )
- # pad local attention probs
- attn_scores += diagonal_mask
- tf.debugging.assert_equal(
- shape_list(attn_scores),
- [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1],
- message=(
- f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads},"
- f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}"
- ),
- )
- # compute global attn indices required through out forward fn
- (
- max_num_global_attn_indices,
- is_index_global_attn_nonzero,
- is_local_index_global_attn_nonzero,
- is_local_index_no_global_attn_nonzero,
- ) = self._get_global_attn_indices(is_index_global_attn)
- # this function is only relevant for global attention
- if is_global_attn:
- attn_scores = self._concat_with_global_key_attn_probs(
- attn_scores=attn_scores,
- query_vectors=query_vectors,
- key_vectors=key_vectors,
- max_num_global_attn_indices=max_num_global_attn_indices,
- is_index_global_attn_nonzero=is_index_global_attn_nonzero,
- is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
- is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
- )
- attn_probs = stable_softmax(attn_scores, axis=-1)
- # softmax sometimes inserts NaN if all positions are masked, replace them with 0
- # Make sure to create a mask with the proper shape:
- # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1]
- # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1]
- if is_global_attn:
- masked_index = tf.tile(
- is_index_masked[:, :, None, None],
- (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1),
- )
- else:
- masked_index = tf.tile(
- is_index_masked[:, :, None, None],
- (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1),
- )
- attn_probs = tf.where(
- masked_index,
- tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype),
- attn_probs,
- )
- if layer_head_mask is not None:
- tf.debugging.assert_equal(
- shape_list(layer_head_mask),
- [self.num_heads],
- message=(
- f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
- f" {shape_list(layer_head_mask)}"
- ),
- )
- attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs
- # apply dropout
- attn_probs = self.dropout(attn_probs, training=training)
- value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
- # if global attention, compute sum of global and local attn
- if is_global_attn:
- attn_output = self._compute_attn_output_with_global_indices(
- value_vectors=value_vectors,
- attn_probs=attn_probs,
- max_num_global_attn_indices=max_num_global_attn_indices,
- is_index_global_attn_nonzero=is_index_global_attn_nonzero,
- is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
- )
- else:
- attn_output = self._sliding_chunks_matmul_attn_probs_value(
- attn_probs, value_vectors, self.one_sided_attn_window_size
- )
- tf.debugging.assert_equal(
- shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size"
- )
- attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim))
- # compute value for global attention and overwrite to attention output
- if is_global_attn:
- attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
- attn_output=attn_output,
- hidden_states=hidden_states,
- max_num_global_attn_indices=max_num_global_attn_indices,
- layer_head_mask=layer_head_mask,
- is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
- is_index_global_attn_nonzero=is_index_global_attn_nonzero,
- is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
- is_index_masked=is_index_masked,
- training=training,
- )
- else:
- # Leave attn_output unchanged
- global_attn_probs = tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len))
- # make sure that local attention probabilities are set to 0 for indices of global attn
- # Make sure to create a mask with the proper shape:
- # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1]
- # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1]
- if is_global_attn:
- masked_global_attn_index = tf.tile(
- is_index_global_attn[:, :, None, None],
- (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1),
- )
- else:
- masked_global_attn_index = tf.tile(
- is_index_global_attn[:, :, None, None],
- (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1),
- )
- attn_probs = tf.where(
- masked_global_attn_index,
- tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype),
- attn_probs,
- )
- outputs = (attn_output, attn_probs, global_attn_probs)
- return outputs
- def _sliding_chunks_query_key_matmul(self, query, key, window_overlap):
- """
- Matrix multiplication of query and key tensors using with a sliding window attention pattern. This
- implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an
- overlap of size window_overlap
- """
- batch_size, seq_len, num_heads, head_dim = shape_list(query)
- tf.debugging.assert_equal(
- seq_len % (window_overlap * 2),
- 0,
- message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}",
- )
- tf.debugging.assert_equal(
- shape_list(query),
- shape_list(key),
- message=(
- f"Shape of query and key should be equal, but got query: {shape_list(query)} and key:"
- f" {shape_list(key)}"
- ),
- )
- chunks_count = seq_len // window_overlap - 1
- # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2
- query = tf.reshape(
- tf.transpose(query, (0, 2, 1, 3)),
- (batch_size * num_heads, seq_len, head_dim),
- )
- key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim))
- chunked_query = self._chunk(query, window_overlap)
- chunked_key = self._chunk(key, window_overlap)
- # matrix multiplication
- # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim
- # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim
- # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap
- chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype)
- chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply
- # convert diagonals into columns
- paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]])
- diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings)
- # allocate space for the overall attention matrix where the chunks are combined. The last dimension
- # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to
- # window_overlap previous words). The following column is attention score from each word to itself, then
- # followed by window_overlap columns for the upper triangle.
- # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions
- # - copying the main diagonal and the upper triangle
- # TODO: This code is most likely not very efficient and should be improved
- diagonal_attn_scores_up_triang = tf.concat(
- [
- diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1],
- diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1],
- ],
- axis=1,
- )
- # - copying the lower triangle
- diagonal_attn_scores_low_triang = tf.concat(
- [
- tf.zeros(
- (batch_size * num_heads, 1, window_overlap, window_overlap),
- dtype=diagonal_chunked_attention_scores.dtype,
- ),
- diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :],
- ],
- axis=1,
- )
- diagonal_attn_scores_first_chunk = tf.concat(
- [
- tf.roll(
- diagonal_chunked_attention_scores,
- shift=[1, window_overlap],
- axis=[2, 3],
- )[:, :, :window_overlap, :window_overlap],
- tf.zeros(
- (batch_size * num_heads, 1, window_overlap, window_overlap),
- dtype=diagonal_chunked_attention_scores.dtype,
- ),
- ],
- axis=1,
- )
- first_chunk_mask = (
- tf.tile(
- tf.range(chunks_count + 1, dtype=tf.int64)[None, :, None, None],
- (batch_size * num_heads, 1, window_overlap, window_overlap),
- )
- < 1
- )
- diagonal_attn_scores_low_triang = tf.where(
- first_chunk_mask,
- diagonal_attn_scores_first_chunk,
- diagonal_attn_scores_low_triang,
- )
- # merging upper and lower triangle
- diagonal_attention_scores = tf.concat(
- [diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1
- )
- # separate batch_size and num_heads dimensions again
- diagonal_attention_scores = tf.transpose(
- tf.reshape(
- diagonal_attention_scores,
- (batch_size, num_heads, seq_len, 2 * window_overlap + 1),
- ),
- (0, 2, 1, 3),
- )
- diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap)
- return diagonal_attention_scores
- @staticmethod
- def _mask_invalid_locations(input_tensor, window_overlap):
- # create correct upper triangle bool mask
- mask_2d_upper = tf.reverse(
- tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0),
- axis=[0],
- )
- # pad to full matrix
- padding = tf.convert_to_tensor(
- [[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]]
- )
- # create lower mask
- mask_2d = tf.pad(mask_2d_upper, padding)
- # combine with upper mask
- mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1])
- # broadcast to full matrix
- mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1))
- # inf tensor used for masking
- inf_tensor = -float("inf") * tf.ones_like(input_tensor)
- # mask
- input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor)
- return input_tensor
- def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap):
- """
- Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the
- same shape as `attn_probs`
- """
- batch_size, seq_len, num_heads, head_dim = shape_list(value)
- tf.debugging.assert_equal(
- seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap"
- )
- tf.debugging.assert_equal(
- shape_list(attn_probs)[:3],
- shape_list(value)[:3],
- message="value and attn_probs must have same dims (except head_dim)",
- )
- tf.debugging.assert_equal(
- shape_list(attn_probs)[3],
- 2 * window_overlap + 1,
- message="attn_probs last dim has to be 2 * window_overlap + 1",
- )
- chunks_count = seq_len // window_overlap - 1
- # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap
- chunked_attn_probs = tf.reshape(
- tf.transpose(attn_probs, (0, 2, 1, 3)),
- (
- batch_size * num_heads,
- seq_len // window_overlap,
- window_overlap,
- 2 * window_overlap + 1,
- ),
- )
- # group batch_size and num_heads dimensions into one
- value = tf.reshape(
- tf.transpose(value, (0, 2, 1, 3)),
- (batch_size * num_heads, seq_len, head_dim),
- )
- # pad seq_len with w at the beginning of the sequence and another window overlap at the end
- paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]])
- padded_value = tf.pad(value, paddings, constant_values=-1)
- # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap
- frame_size = 3 * window_overlap * head_dim
- frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count
- chunked_value = tf.signal.frame(
- tf.reshape(padded_value, (batch_size * num_heads, -1)),
- frame_size,
- frame_hop_size,
- )
- chunked_value = tf.reshape(
- chunked_value,
- (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim),
- )
- tf.debugging.assert_equal(
- shape_list(chunked_value),
- [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim],
- message="Chunked value has the wrong shape",
- )
- chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)
- context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value)
- context = tf.transpose(
- tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)),
- (0, 2, 1, 3),
- )
- return context
- @staticmethod
- def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings):
- """pads rows and then flips rows and columns"""
- hidden_states_padded = tf.pad(
- hidden_states_padded, paddings
- ) # padding value is not important because it will be overwritten
- batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded)
- hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length))
- return hidden_states_padded
- @staticmethod
- def _pad_and_diagonalize(chunked_hidden_states):
- """
- shift every row 1 step right, converting columns into diagonals.
- Example:
- ```python
- chunked_hidden_states: [
- 0.4983,
- 2.6918,
- -0.0071,
- 1.0492,
- -1.8348,
- 0.7672,
- 0.2986,
- 0.0285,
- -0.7584,
- 0.4206,
- -0.0405,
- 0.1599,
- 2.0514,
- -1.1600,
- 0.5372,
- 0.2629,
- ]
- window_overlap = num_rows = 4
- ```
- (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000
- 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206,
- -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ]
- """
- total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states)
- paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]])
- chunked_hidden_states = tf.pad(
- chunked_hidden_states, paddings
- ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten
- chunked_hidden_states = tf.reshape(
- chunked_hidden_states, (total_num_heads, num_chunks, -1)
- ) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap
- chunked_hidden_states = chunked_hidden_states[
- :, :, :-window_overlap
- ] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap
- chunked_hidden_states = tf.reshape(
- chunked_hidden_states,
- (total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim),
- ) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap
- chunked_hidden_states = chunked_hidden_states[:, :, :, :-1]
- return chunked_hidden_states
- @staticmethod
- def _chunk(hidden_states, window_overlap):
- """convert into overlapping chunks. Chunk size = 2w, overlap size = w"""
- batch_size, seq_length, hidden_dim = shape_list(hidden_states)
- num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1
- # define frame size and frame stride (similar to convolution)
- frame_hop_size = window_overlap * hidden_dim
- frame_size = 2 * frame_hop_size
- hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim))
- # chunk with overlap
- chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size)
- tf.debugging.assert_equal(
- shape_list(chunked_hidden_states),
- [batch_size, num_output_chunks, frame_size],
- message=(
- "Make sure chunking is correctly applied. `Chunked hidden states should have output dimension"
- f" {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}."
- ),
- )
- chunked_hidden_states = tf.reshape(
- chunked_hidden_states,
- (batch_size, num_output_chunks, 2 * window_overlap, hidden_dim),
- )
- return chunked_hidden_states
- @staticmethod
- def _get_global_attn_indices(is_index_global_attn):
- """compute global attn indices required throughout forward pass"""
- # helper variable
- num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1)
- num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype)
- # max number of global attn indices in batch
- max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices)
- # indices of global attn
- is_index_global_attn_nonzero = tf.where(is_index_global_attn)
- # helper variable
- is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims(
- num_global_attn_indices, axis=-1
- )
- # location of the non-padding values within global attention indices
- is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn)
- # location of the padding values within global attention indices
- is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn))
- return (
- max_num_global_attn_indices,
- is_index_global_attn_nonzero,
- is_local_index_global_attn_nonzero,
- is_local_index_no_global_attn_nonzero,
- )
- def _concat_with_global_key_attn_probs(
- self,
- attn_scores,
- key_vectors,
- query_vectors,
- max_num_global_attn_indices,
- is_index_global_attn_nonzero,
- is_local_index_global_attn_nonzero,
- is_local_index_no_global_attn_nonzero,
- ):
- batch_size = shape_list(key_vectors)[0]
- # select global key vectors
- global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero)
- # create only global key vectors
- key_vectors_only_global = tf.scatter_nd(
- is_local_index_global_attn_nonzero,
- global_key_vectors,
- shape=(
- batch_size,
- max_num_global_attn_indices,
- self.num_heads,
- self.head_dim,
- ),
- )
- # (batch_size, seq_len, num_heads, max_num_global_attn_indices)
- attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global)
- # (batch_size, max_num_global_attn_indices, seq_len, num_heads)
- attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2))
- mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple(
- shape_list(attn_probs_from_global_key_trans)[-2:]
- )
- mask = tf.ones(mask_shape) * -10000.0
- mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype)
- # scatter mask
- attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update(
- attn_probs_from_global_key_trans,
- is_local_index_no_global_attn_nonzero,
- mask,
- )
- # (batch_size, seq_len, num_heads, max_num_global_attn_indices)
- attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1))
- # concat to attn_probs
- # (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
- attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1)
- return attn_scores
- def _compute_attn_output_with_global_indices(
- self,
- value_vectors,
- attn_probs,
- max_num_global_attn_indices,
- is_index_global_attn_nonzero,
- is_local_index_global_attn_nonzero,
- ):
- batch_size = shape_list(attn_probs)[0]
- # cut local attn probs to global only
- attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices]
- # select global value vectors
- global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero)
- # create only global value vectors
- value_vectors_only_global = tf.scatter_nd(
- is_local_index_global_attn_nonzero,
- global_value_vectors,
- shape=(
- batch_size,
- max_num_global_attn_indices,
- self.num_heads,
- self.head_dim,
- ),
- )
- # compute attn output only global
- attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global)
- # reshape attn probs
- attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:]
- # compute attn output with global
- attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value(
- attn_probs_without_global, value_vectors, self.one_sided_attn_window_size
- )
- return attn_output_only_global + attn_output_without_global
- def _compute_global_attn_output_from_hidden(
- self,
- attn_output,
- hidden_states,
- max_num_global_attn_indices,
- layer_head_mask,
- is_local_index_global_attn_nonzero,
- is_index_global_attn_nonzero,
- is_local_index_no_global_attn_nonzero,
- is_index_masked,
- training,
- ):
- batch_size, seq_len = shape_list(hidden_states)[:2]
- # prepare global hidden states
- global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero)
- global_attn_hidden_states = tf.scatter_nd(
- is_local_index_global_attn_nonzero,
- global_attn_hidden_states,
- shape=(batch_size, max_num_global_attn_indices, self.embed_dim),
- )
- # global key, query, value
- global_query_vectors_only_global = self.query_global(global_attn_hidden_states)
- global_key_vectors = self.key_global(hidden_states)
- global_value_vectors = self.value_global(hidden_states)
- # normalize
- global_query_vectors_only_global /= tf.math.sqrt(
- tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype)
- )
- global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size)
- global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size)
- global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size)
- # compute attn scores
- global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True)
- tf.debugging.assert_equal(
- shape_list(global_attn_scores),
- [batch_size * self.num_heads, max_num_global_attn_indices, seq_len],
- message=(
- "global_attn_scores have the wrong size. Size should be"
- f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is"
- f" {shape_list(global_attn_scores)}."
- ),
- )
- global_attn_scores = tf.reshape(
- global_attn_scores,
- (batch_size, self.num_heads, max_num_global_attn_indices, seq_len),
- )
- global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3))
- mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple(
- shape_list(global_attn_scores_trans)[-2:]
- )
- global_attn_mask = tf.ones(mask_shape) * -10000.0
- global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype)
- # scatter mask
- global_attn_scores_trans = tf.tensor_scatter_nd_update(
- global_attn_scores_trans,
- is_local_index_no_global_attn_nonzero,
- global_attn_mask,
- )
- global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3))
- # mask global attn scores
- attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1))
- global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores)
- global_attn_scores = tf.reshape(
- global_attn_scores,
- (batch_size * self.num_heads, max_num_global_attn_indices, seq_len),
- )
- # compute global attn probs
- global_attn_probs_float = stable_softmax(global_attn_scores, axis=-1)
- # apply layer head masking
- if layer_head_mask is not None:
- tf.debugging.assert_equal(
- shape_list(layer_head_mask),
- [self.num_heads],
- message=(
- f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
- f" {shape_list(layer_head_mask)}"
- ),
- )
- global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
- global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
- )
- global_attn_probs_float = tf.reshape(
- global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len)
- )
- # dropout
- global_attn_probs = self.global_dropout(global_attn_probs_float, training=training)
- # global attn output
- global_attn_output = tf.matmul(global_attn_probs, global_value_vectors)
- tf.debugging.assert_equal(
- shape_list(global_attn_output),
- [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim],
- message=(
- "global_attn_output tensor has the wrong size. Size should be"
- f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is"
- f" {shape_list(global_attn_output)}."
- ),
- )
- global_attn_output = tf.reshape(
- global_attn_output,
- (batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim),
- )
- # get only non zero global attn output
- nonzero_global_attn_output = tf.gather_nd(
- tf.transpose(global_attn_output, (0, 2, 1, 3)),
- is_local_index_global_attn_nonzero,
- )
- nonzero_global_attn_output = tf.reshape(
- nonzero_global_attn_output,
- (shape_list(is_local_index_global_attn_nonzero)[0], -1),
- )
- # overwrite values with global attention
- attn_output = tf.tensor_scatter_nd_update(
- attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output
- )
- global_attn_probs = tf.reshape(
- global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
- )
- return attn_output, global_attn_probs
- def reshape_and_transpose(self, vector, batch_size):
- return tf.reshape(
- tf.transpose(
- tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)),
- (0, 2, 1, 3),
- ),
- (batch_size * self.num_heads, -1, self.head_dim),
- )
- class TFLEDEncoderAttention(keras.layers.Layer):
- def __init__(self, config, layer_id, **kwargs):
- super().__init__(**kwargs)
- self.longformer_self_attn = TFLEDEncoderSelfAttention(config, layer_id=layer_id, name="longformer_self_attn")
- self.output_dense = keras.layers.Dense(config.d_model, use_bias=True, name="output")
- self.config = config
- def call(self, inputs, training=False):
- (
- hidden_states,
- attention_mask,
- layer_head_mask,
- is_index_masked,
- is_index_global_attn,
- is_global_attn,
- ) = inputs
- self_outputs = self.longformer_self_attn(
- [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn],
- training=training,
- )
- attention_output = self.output_dense(self_outputs[0], training=training)
- outputs = (attention_output,) + self_outputs[1:]
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "longformer_self_attn", None) is not None:
- with tf.name_scope(self.longformer_self_attn.name):
- self.longformer_self_attn.build(None)
- if getattr(self, "output_dense", None) is not None:
- with tf.name_scope(self.output_dense.name):
- self.output_dense.build([None, None, self.config.d_model])
- class TFLEDDecoderAttention(keras.layers.Layer):
- """Multi-headed attention from "Attention Is All You Need"""
- def __init__(
- self,
- embed_dim: int,
- num_heads: int,
- dropout: float = 0.0,
- is_decoder: bool = False,
- bias: bool = True,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.embed_dim = embed_dim
- self.num_heads = num_heads
- self.dropout = keras.layers.Dropout(dropout)
- self.head_dim = embed_dim // num_heads
- assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
- self.scaling = self.head_dim**-0.5
- self.is_decoder = is_decoder
- self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
- self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
- self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
- self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
- def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
- return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
- def call(
- self,
- hidden_states: tf.Tensor,
- key_value_states: tf.Tensor | None = None,
- past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
- attention_mask: tf.Tensor | None = None,
- layer_head_mask: tf.Tensor | None = None,
- training=False,
- ) -> Tuple[tf.Tensor, tf.Tensor | None]:
- """Input shape: Batch x Time x Channel"""
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
- bsz, tgt_len, embed_dim = shape_list(hidden_states)
- # get query proj
- query_states = self.q_proj(hidden_states) * self.scaling
- # get key, value proj
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = tf.concat([past_key_value[0], key_states], axis=2)
- value_states = tf.concat([past_key_value[1], value_states], axis=2)
- else:
- # self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- if self.is_decoder:
- # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
- proj_shape = (bsz * self.num_heads, -1, self.head_dim)
- query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
- key_states = tf.reshape(key_states, proj_shape)
- value_states = tf.reshape(value_states, proj_shape)
- src_len = shape_list(key_states)[1]
- attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
- tf.debugging.assert_equal(
- shape_list(attn_weights),
- [bsz * self.num_heads, tgt_len, src_len],
- message=(
- f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
- f" {shape_list(attn_weights)}"
- ),
- )
- if attention_mask is not None:
- tf.debugging.assert_equal(
- shape_list(attention_mask),
- [bsz, 1, tgt_len, src_len],
- message=(
- f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
- f" {shape_list(attention_mask)}"
- ),
- )
- attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + tf.cast(
- attention_mask, dtype=attn_weights.dtype
- )
- attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
- attn_weights = stable_softmax(attn_weights, axis=-1)
- if layer_head_mask is not None:
- tf.debugging.assert_equal(
- shape_list(layer_head_mask),
- [self.num_heads],
- message=(
- f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
- f" {shape_list(layer_head_mask)}"
- ),
- )
- attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
- attn_weights, (bsz, self.num_heads, tgt_len, src_len)
- )
- attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
- attn_probs = self.dropout(attn_weights, training=training)
- attn_output = tf.matmul(attn_probs, value_states)
- tf.debugging.assert_equal(
- shape_list(attn_output),
- [bsz * self.num_heads, tgt_len, self.head_dim],
- message=(
- f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
- f" {shape_list(attn_output)}"
- ),
- )
- attn_output = tf.transpose(
- tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
- )
- attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
- attn_output = self.out_proj(attn_output)
- attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
- return attn_output, attn_weights, past_key_value
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "k_proj", None) is not None:
- with tf.name_scope(self.k_proj.name):
- self.k_proj.build([None, None, self.embed_dim])
- if getattr(self, "q_proj", None) is not None:
- with tf.name_scope(self.q_proj.name):
- self.q_proj.build([None, None, self.embed_dim])
- if getattr(self, "v_proj", None) is not None:
- with tf.name_scope(self.v_proj.name):
- self.v_proj.build([None, None, self.embed_dim])
- if getattr(self, "out_proj", None) is not None:
- with tf.name_scope(self.out_proj.name):
- self.out_proj.build([None, None, self.embed_dim])
- class TFLEDEncoderLayer(keras.layers.Layer):
- def __init__(self, config: LEDConfig, layer_id: int, **kwargs):
- super().__init__(**kwargs)
- self.embed_dim = config.d_model
- self.self_attn = TFLEDEncoderAttention(config, layer_id, name="self_attn")
- self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
- self.dropout = keras.layers.Dropout(config.dropout)
- self.activation_fn = get_tf_activation(config.activation_function)
- self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
- self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
- self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
- self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
- self.config = config
- def call(
- self,
- hidden_states: tf.Tensor,
- attention_mask: tf.Tensor,
- layer_head_mask: tf.Tensor,
- is_index_masked: tf.Tensor,
- is_index_global_attn: tf.Tensor,
- is_global_attn: bool,
- training=False,
- ):
- """
- Args:
- hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
- attention_mask (`tf.Tensor`): attention mask of size
- *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
- layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
- *(config.encoder_attention_heads,)*.
- """
- residual = hidden_states
- layer_outputs = self.self_attn(
- [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn],
- training=training,
- )
- hidden_states = layer_outputs[0]
- tf.debugging.assert_equal(
- shape_list(hidden_states),
- shape_list(residual),
- message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
- )
- hidden_states = self.dropout(hidden_states, training=training)
- hidden_states = residual + hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
- residual = hidden_states
- hidden_states = self.activation_fn(self.fc1(hidden_states))
- hidden_states = self.activation_dropout(hidden_states, training=training)
- hidden_states = self.fc2(hidden_states)
- hidden_states = self.dropout(hidden_states, training=training)
- hidden_states = residual + hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
- return (hidden_states,) + layer_outputs[1:]
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "self_attn", None) is not None:
- with tf.name_scope(self.self_attn.name):
- self.self_attn.build(None)
- if getattr(self, "self_attn_layer_norm", None) is not None:
- with tf.name_scope(self.self_attn_layer_norm.name):
- self.self_attn_layer_norm.build([None, None, self.embed_dim])
- if getattr(self, "fc1", None) is not None:
- with tf.name_scope(self.fc1.name):
- self.fc1.build([None, None, self.embed_dim])
- if getattr(self, "fc2", None) is not None:
- with tf.name_scope(self.fc2.name):
- self.fc2.build([None, None, self.config.encoder_ffn_dim])
- if getattr(self, "final_layer_norm", None) is not None:
- with tf.name_scope(self.final_layer_norm.name):
- self.final_layer_norm.build([None, None, self.embed_dim])
- class TFLEDDecoderLayer(keras.layers.Layer):
- def __init__(self, config: LEDConfig, **kwargs):
- super().__init__(**kwargs)
- self.embed_dim = config.d_model
- self.self_attn = TFLEDDecoderAttention(
- embed_dim=self.embed_dim,
- num_heads=config.decoder_attention_heads,
- dropout=config.attention_dropout,
- name="self_attn",
- is_decoder=True,
- )
- self.dropout = keras.layers.Dropout(config.dropout)
- self.activation_fn = get_tf_activation(config.activation_function)
- self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
- self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
- self.encoder_attn = TFLEDDecoderAttention(
- self.embed_dim,
- config.decoder_attention_heads,
- dropout=config.attention_dropout,
- name="encoder_attn",
- is_decoder=True,
- )
- self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
- self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
- self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
- self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
- self.config = config
- def call(
- self,
- hidden_states,
- attention_mask: tf.Tensor | None = None,
- encoder_hidden_states: tf.Tensor | None = None,
- encoder_attention_mask: tf.Tensor | None = None,
- layer_head_mask: tf.Tensor | None = None,
- encoder_layer_head_mask: tf.Tensor | None = None,
- past_key_value: Tuple[tf.Tensor] | None = None,
- training=False,
- ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
- """
- Args:
- hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
- attention_mask (`tf.Tensor`): attention mask of size
- *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
- encoder_hidden_states (`tf.Tensor`):
- cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
- encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
- *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
- layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
- *(config.encoder_attention_heads,)*.
- encoder_layer_head_mask (`tf.Tensor`): mask for encoder attention heads in a given layer of
- size *(config.encoder_attention_heads,)*.
- past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
- """
- residual = hidden_states
- # Self-Attention
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- # add present self-attn cache to positions 1,2 of present_key_value tuple
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
- hidden_states=hidden_states,
- past_key_value=self_attn_past_key_value,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- )
- hidden_states = self.dropout(hidden_states, training=training)
- hidden_states = residual + hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
- # Cross-Attention Block
- cross_attn_present_key_value = None
- cross_attn_weights = None
- if encoder_hidden_states is not None:
- residual = hidden_states
- # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
- hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
- hidden_states=hidden_states,
- key_value_states=encoder_hidden_states,
- attention_mask=encoder_attention_mask,
- layer_head_mask=encoder_layer_head_mask,
- past_key_value=cross_attn_past_key_value,
- )
- hidden_states = self.dropout(hidden_states, training=training)
- hidden_states = residual + hidden_states
- hidden_states = self.encoder_attn_layer_norm(hidden_states)
- # add cross-attn to positions 3,4 of present_key_value tuple
- present_key_value = present_key_value + cross_attn_present_key_value
- # Fully Connected
- residual = hidden_states
- hidden_states = self.activation_fn(self.fc1(hidden_states))
- hidden_states = self.activation_dropout(hidden_states, training=training)
- hidden_states = self.fc2(hidden_states)
- hidden_states = self.dropout(hidden_states, training=training)
- hidden_states = residual + hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
- return (
- hidden_states,
- self_attn_weights,
- cross_attn_weights,
- present_key_value,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "self_attn", None) is not None:
- with tf.name_scope(self.self_attn.name):
- self.self_attn.build(None)
- if getattr(self, "self_attn_layer_norm", None) is not None:
- with tf.name_scope(self.self_attn_layer_norm.name):
- self.self_attn_layer_norm.build([None, None, self.embed_dim])
- if getattr(self, "encoder_attn", None) is not None:
- with tf.name_scope(self.encoder_attn.name):
- self.encoder_attn.build(None)
- if getattr(self, "encoder_attn_layer_norm", None) is not None:
- with tf.name_scope(self.encoder_attn_layer_norm.name):
- self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
- if getattr(self, "fc1", None) is not None:
- with tf.name_scope(self.fc1.name):
- self.fc1.build([None, None, self.embed_dim])
- if getattr(self, "fc2", None) is not None:
- with tf.name_scope(self.fc2.name):
- self.fc2.build([None, None, self.config.decoder_ffn_dim])
- if getattr(self, "final_layer_norm", None) is not None:
- with tf.name_scope(self.final_layer_norm.name):
- self.final_layer_norm.build([None, None, self.embed_dim])
- class TFLEDPreTrainedModel(TFPreTrainedModel):
- config_class = LEDConfig
- base_model_prefix = "led"
- @property
- def input_signature(self):
- sig = super().input_signature
- sig["global_attention_mask"] = tf.TensorSpec((None, None), tf.int32, name="global_attention_mask")
- return sig
- @dataclass
- # Copied from transformers.models.longformer.modeling_tf_longformer.TFLongformerBaseModelOutput with TFLongformer->TFLEDEncoder
- class TFLEDEncoderBaseModelOutput(ModelOutput):
- """
- Base class for Longformer's outputs, with potential hidden states, local and global attentions.
- Args:
- last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
- `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the initial embedding outputs.
- attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
- attention_window + 1)`, where `x` is the number of tokens with global attention mask.
- Local attentions weights after the attention softmax, used to compute the weighted average in the
- self-attention heads. Those are the attention weights from every token in the sequence to every token with
- global attention (first `x` values) and to every token in the attention window (remaining `attention_window
- + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
- remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
- token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
- (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
- If the attention window contains a token with global attention, the attention weight at the corresponding
- index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
- attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
- accessed from `global_attentions`.
- global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
- is the number of tokens with global attention mask.
- Global attentions weights after the attention softmax, used to compute the weighted average in the
- self-attention heads. Those are the attention weights from every token with global attention to every token
- in the sequence.
- """
- last_hidden_state: tf.Tensor = None
- hidden_states: Tuple[tf.Tensor, ...] | None = None
- attentions: Tuple[tf.Tensor, ...] | None = None
- global_attentions: Tuple[tf.Tensor, ...] | None = None
- @dataclass
- class TFLEDSeq2SeqModelOutput(ModelOutput):
- """
- Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
- decoding.
- Args:
- last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the decoder of the model.
- If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
- hidden_size)` is output.
- past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
- sequence_length, embed_size_per_head)`).
- Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
- used (see `past_key_values` input) to speed up sequential decoding.
- decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
- `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
- decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- cross_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
- weighted average in the cross-attention heads.
- encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder of the model.
- encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
- `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
- encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- encoder_global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
- is the number of tokens with global attention mask.
- Global attentions weights after the attention softmax, used to compute the weighted average in the
- self-attention heads. Those are the attention weights from every token with global attention to every token
- in the sequence.
- """
- last_hidden_state: tf.Tensor = None
- past_key_values: List[tf.Tensor] | None = None
- decoder_hidden_states: Tuple[tf.Tensor, ...] | None = None
- decoder_attentions: Tuple[tf.Tensor, ...] | None = None
- cross_attentions: Tuple[tf.Tensor, ...] | None = None
- encoder_last_hidden_state: tf.Tensor | None = None
- encoder_hidden_states: Tuple[tf.Tensor, ...] | None = None
- encoder_attentions: Tuple[tf.Tensor, ...] | None = None
- encoder_global_attentions: Tuple[tf.Tensor, ...] | None = None
- @dataclass
- class TFLEDSeq2SeqLMOutput(ModelOutput):
- """
- Base class for sequence-to-sequence language models outputs.
- Args:
- loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Language modeling loss.
- logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
- past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
- sequence_length, embed_size_per_head)`).
- Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
- used (see `past_key_values` input) to speed up sequential decoding.
- decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
- `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
- decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- cross_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
- weighted average in the cross-attention heads.
- encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder of the model.
- encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
- `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
- encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- encoder_global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
- is the number of tokens with global attention mask.
- Global attentions weights after the attention softmax, used to compute the weighted average in the
- self-attention heads. Those are the attention weights from every token with global attention to every token
- in the sequence.
- """
- loss: tf.Tensor | None = None
- logits: tf.Tensor = None
- past_key_values: List[tf.Tensor] | None = None
- decoder_hidden_states: Tuple[tf.Tensor, ...] | None = None
- decoder_attentions: Tuple[tf.Tensor, ...] | None = None
- cross_attentions: Tuple[tf.Tensor, ...] | None = None
- encoder_last_hidden_state: tf.Tensor | None = None
- encoder_hidden_states: Tuple[tf.Tensor, ...] | None = None
- encoder_attentions: Tuple[tf.Tensor, ...] | None = None
- encoder_global_attentions: Tuple[tf.Tensor, ...] | None = None
- LED_START_DOCSTRING = r"""
- This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
- as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
- behavior.
- <Tip>
- TensorFlow models and layers in `transformers` accept two formats as input:
- - having all inputs as keyword arguments (like PyTorch models), or
- - having all inputs as a list, tuple or dict in the first positional argument.
- The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
- and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
- pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
- format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
- the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
- positional argument:
- - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
- `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- - a dictionary with one or several input Tensors associated to the input names given in the docstring:
- `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
- Note that when creating models and layers with
- [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
- about any of this, as you can just pass inputs like you would to any other Python function!
- </Tip>
- Args:
- config ([`LEDConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
- """
- LED_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`tf.Tensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
- Indices of decoder input sequence tokens in the vocabulary.
- Indices can be obtained using [`LedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- LED uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
- is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
- decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
- will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
- head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- encoder_outputs (`tf.Tensor`, *optional*):
- hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
- of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
- past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
- contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*, defaults to `True`):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`). Set to `False` during training, `True` during generation
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
- config will be used instead.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
- used instead.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
- eager mode, in graph mode the value will always be set to True.
- training (`bool`, *optional*, defaults to `False`):
- Whether or not to use the model in training mode (some modules like dropout modules have different
- behaviors between training and evaluation).
- """
- @keras_serializable
- class TFLEDEncoder(keras.layers.Layer):
- config_class = LEDConfig
- """
- Transformer encoder consisting of *config.encoder_layers* self-attention layers. Each layer is a
- [`TFLEDEncoderLayer`].
- Args:
- config: LEDConfig
- """
- def __init__(self, config: LEDConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
- super().__init__(**kwargs)
- self.config = config
- self.dropout = keras.layers.Dropout(config.dropout)
- if config.encoder_layerdrop > 0:
- logger.warning("Layerdrop is currently disabled in TFLED models.")
- self.layerdrop = 0.0
- self.padding_idx = config.pad_token_id
- if isinstance(config.attention_window, int):
- assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
- assert config.attention_window > 0, "`config.attention_window` has to be positive"
- config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer
- else:
- assert len(config.attention_window) == config.num_hidden_layers, (
- "`len(config.attention_window)` should equal `config.num_hidden_layers`. "
- f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
- )
- self.attention_window = config.attention_window
- self.embed_tokens = embed_tokens
- self.embed_positions = TFLEDLearnedPositionalEmbedding(
- config.max_encoder_position_embeddings,
- config.d_model,
- name="embed_positions",
- )
- self.layers = [TFLEDEncoderLayer(config, i, name=f"layers.{i}") for i in range(config.encoder_layers)]
- self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
- self.embed_dim = config.d_model
- def get_embed_tokens(self):
- return self.embed_tokens
- def set_embed_tokens(self, embed_tokens):
- self.embed_tokens = embed_tokens
- @unpack_inputs
- def call(
- self,
- input_ids=None,
- inputs_embeds=None,
- attention_mask=None,
- global_attention_mask=None,
- head_mask=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- training=False,
- ):
- """
- Args:
- input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`tf.Tensor` of shape `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- input_shape = shape_list(input_ids)
- check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
- inputs_embeds = self.embed_tokens(input_ids)
- elif inputs_embeds is not None:
- input_shape = shape_list(inputs_embeds)[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- if attention_mask is None:
- attention_mask = tf.fill(input_shape, 1)
- # merge `global_attention_mask` and `attention_mask`
- if global_attention_mask is not None:
- attention_mask = attention_mask * tf.cast((global_attention_mask + 1), dtype=attention_mask.dtype)
- padding_len, input_ids, attention_mask, inputs_embeds = self._pad_to_window_size(
- input_ids=input_ids,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- pad_token_id=self.padding_idx,
- )
- input_shape = shape_list(attention_mask)
- # is index masked or global attention
- is_index_masked = tf.math.less(tf.cast(attention_mask, tf.int8), 1)
- is_index_global_attn = tf.math.greater(tf.cast(attention_mask, tf.int8), 1)
- is_global_attn = tf.math.reduce_any(is_index_global_attn)
- embed_pos = self.embed_positions(input_shape)
- hidden_states = inputs_embeds + embed_pos
- hidden_states = self.layernorm_embedding(hidden_states)
- hidden_states = self.dropout(hidden_states, training=training)
- # check attention mask and invert
- if attention_mask is not None:
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- attention_mask = _expand_mask(attention_mask)[:, 0, 0, :]
- attention_mask = attention_mask[:, :, None, None]
- encoder_states = () if output_hidden_states else None
- all_attentions = all_global_attentions = () if output_attentions else None
- # check if head_mask has a correct number of layers specified if desired
- if head_mask is not None:
- tf.debugging.assert_equal(
- shape_list(head_mask)[0],
- len(self.layers),
- message=(
- f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
- f" {shape_list(head_mask)[0]}."
- ),
- )
- # encoder layers
- for idx, encoder_layer in enumerate(self.layers):
- if output_hidden_states:
- hidden_states_to_add = self.compute_hidden_states(hidden_states, padding_len)
- encoder_states = encoder_states + (hidden_states_to_add,)
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
- dropout_probability = random.uniform(0, 1)
- if training and (dropout_probability < self.layerdrop): # skip the layer
- continue
- layer_outputs = encoder_layer(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- layer_head_mask=head_mask[idx] if head_mask is not None else None,
- is_index_masked=is_index_masked,
- is_index_global_attn=is_index_global_attn,
- is_global_attn=is_global_attn,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
- all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),)
- # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
- all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2)),)
- # undo padding
- # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1)
- hidden_states = self.compute_hidden_states(hidden_states, padding_len)
- # undo padding
- if output_attentions:
- all_attentions = (
- tuple([state[:, :, :-padding_len, :] for state in all_attentions])
- if padding_len > 0
- else all_attentions
- )
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
- return TFLEDEncoderBaseModelOutput(
- last_hidden_state=hidden_states,
- hidden_states=encoder_states,
- attentions=all_attentions,
- global_attentions=all_global_attentions,
- )
- @tf.function
- def compute_hidden_states(self, hidden_states, padding_len):
- return hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states
- def _pad_to_window_size(
- self,
- input_ids,
- attention_mask,
- inputs_embeds,
- pad_token_id,
- ):
- """A helper function to pad tokens and mask to work with implementation of Longformer selfattention."""
- # padding
- attention_window = (
- self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window)
- )
- assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}"
- input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)
- batch_size, seq_len = input_shape[:2]
- padding_len = (attention_window - seq_len % attention_window) % attention_window
- if padding_len > 0:
- logger.warning_once(
- f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
- f"`config.attention_window`: {attention_window}"
- )
- paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]])
- if input_ids is not None:
- input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id)
- if inputs_embeds is not None:
- if padding_len > 0:
- input_ids_padding = tf.fill((batch_size, padding_len), pad_token_id)
- inputs_embeds_padding = self.embed_tokens(input_ids_padding)
- inputs_embeds = tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2)
- attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens
- return (
- padding_len,
- input_ids,
- attention_mask,
- inputs_embeds,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "embed_positions", None) is not None:
- with tf.name_scope(self.embed_positions.name):
- self.embed_positions.build(None)
- if getattr(self, "layernorm_embedding", None) is not None:
- with tf.name_scope(self.layernorm_embedding.name):
- self.layernorm_embedding.build([None, None, self.embed_dim])
- if getattr(self, "layers", None) is not None:
- for layer in self.layers:
- with tf.name_scope(layer.name):
- layer.build(None)
- @keras_serializable
- class TFLEDDecoder(keras.layers.Layer):
- config_class = LEDConfig
- """
- Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFLEDDecoderLayer`]
- Args:
- config: LEDConfig
- embed_tokens: output embedding
- """
- def __init__(self, config: LEDConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
- super().__init__(**kwargs)
- self.config = config
- self.padding_idx = config.pad_token_id
- self.embed_tokens = embed_tokens
- if config.decoder_layerdrop > 0:
- logger.warning("Layerdrop is currently disabled in TFLED models.")
- self.layerdrop = 0.0
- self.embed_positions = TFLEDLearnedPositionalEmbedding(
- config.max_decoder_position_embeddings,
- config.d_model,
- name="embed_positions",
- )
- self.layers = [TFLEDDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
- self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
- self.dropout = keras.layers.Dropout(config.dropout)
- def set_embed_tokens(self, embed_tokens):
- self.embed_tokens = embed_tokens
- @unpack_inputs
- def call(
- self,
- input_ids=None,
- inputs_embeds=None,
- attention_mask=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- head_mask=None,
- encoder_head_mask=None,
- past_key_values=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- training=False,
- ):
- r"""
- Args:
- input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
- attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
- of the decoder.
- encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
- Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
- selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- encoder_head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
- on hidden heads. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
- Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
- decoding. If `past_key_values` are used, the user can optionally input only the last
- `decoder_input_ids` (those that don't have their past key value states given to this model) of shape
- `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
- elif input_ids is not None:
- input_shape = shape_list(input_ids)
- elif inputs_embeds is not None:
- input_shape = shape_list(inputs_embeds)[:-1]
- else:
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
- past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
- # embed positions
- positions = self.embed_positions(input_shape, past_key_values_length)
- if inputs_embeds is None:
- check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
- inputs_embeds = self.embed_tokens(input_ids)
- hidden_states = inputs_embeds
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- if input_shape[-1] > 1:
- combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
- else:
- combined_attention_mask = _expand_mask(
- tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
- )
- if attention_mask is not None and input_shape[-1] > 1:
- combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
- if encoder_hidden_states is not None and encoder_attention_mask is not None:
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
- hidden_states = self.layernorm_embedding(hidden_states + positions)
- hidden_states = self.dropout(hidden_states, training=training)
- # decoder layers
- all_hidden_states = ()
- all_self_attns = ()
- all_cross_attentions = ()
- present_key_values = ()
- # check if head_mask has a correct number of layers specified if desired
- if head_mask is not None:
- tf.debugging.assert_equal(
- shape_list(head_mask)[0],
- len(self.layers),
- message=(
- f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
- f" {shape_list(head_mask)[0]}."
- ),
- )
- for idx, decoder_layer in enumerate(self.layers):
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- dropout_probability = random.uniform(0, 1)
- if training and (dropout_probability < self.layerdrop):
- continue
- past_key_value = past_key_values[idx] if past_key_values is not None else None
- hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
- hidden_states,
- attention_mask=combined_attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- layer_head_mask=head_mask[idx] if head_mask is not None else None,
- encoder_layer_head_mask=encoder_head_mask[idx] if encoder_head_mask is not None else None,
- past_key_value=past_key_value,
- )
- if use_cache:
- present_key_values += (present_key_value,)
- if output_attentions:
- all_self_attns += (layer_self_attn,)
- all_cross_attentions += (layer_cross_attn,)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- else:
- all_hidden_states = None
- all_self_attns = all_self_attns if output_attentions else None
- all_cross_attentions = all_cross_attentions if output_attentions else None
- present_key_values = present_key_values if use_cache else None
- if not return_dict:
- return tuple(
- v
- for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attentions]
- if v is not None
- )
- else:
- return TFBaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=present_key_values,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- cross_attentions=all_cross_attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "embed_positions", None) is not None:
- with tf.name_scope(self.embed_positions.name):
- self.embed_positions.build(None)
- if getattr(self, "layernorm_embedding", None) is not None:
- with tf.name_scope(self.layernorm_embedding.name):
- self.layernorm_embedding.build([None, None, self.config.d_model])
- if getattr(self, "layers", None) is not None:
- for layer in self.layers:
- with tf.name_scope(layer.name):
- layer.build(None)
- @keras_serializable
- class TFLEDMainLayer(keras.layers.Layer):
- config_class = LEDConfig
- def __init__(self, config: LEDConfig, **kwargs):
- super().__init__(**kwargs)
- self.config = config
- self.shared = keras.layers.Embedding(
- input_dim=config.vocab_size,
- output_dim=config.d_model,
- embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
- name="led.shared",
- )
- # Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
- self.shared.load_weight_prefix = "led.shared"
- self.encoder = TFLEDEncoder(config, self.shared, name="encoder")
- self.decoder = TFLEDDecoder(config, self.shared, name="decoder")
- def get_input_embeddings(self):
- return self.shared
- def set_input_embeddings(self, new_embeddings):
- self.shared = new_embeddings
- self.encoder.embed_tokens = self.shared
- self.decoder.embed_tokens = self.shared
- @unpack_inputs
- def call(
- self,
- input_ids=None,
- attention_mask=None,
- decoder_input_ids=None,
- decoder_attention_mask=None,
- head_mask=None,
- decoder_head_mask=None,
- encoder_outputs: Optional[Union[Tuple, TFLEDEncoderBaseModelOutput]] = None,
- global_attention_mask=None,
- past_key_values=None,
- inputs_embeds=None,
- decoder_inputs_embeds=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- training=False,
- **kwargs,
- ):
- if decoder_input_ids is None and decoder_inputs_embeds is None:
- use_cache = False
- if encoder_outputs is None:
- encoder_outputs = self.encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- global_attention_mask=global_attention_mask,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- # If the user passed a tuple for encoder_outputs, we wrap it in a TFLEDEncoderBaseModelOutput when return_dict=True
- elif return_dict and not isinstance(encoder_outputs, TFLEDEncoderBaseModelOutput):
- encoder_outputs = TFLEDEncoderBaseModelOutput(
- last_hidden_state=encoder_outputs[0],
- hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
- attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
- )
- # If the user passed a TFLEDEncoderBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
- elif not return_dict and not isinstance(encoder_outputs, tuple):
- encoder_outputs = encoder_outputs.to_tuple()
- decoder_outputs = self.decoder(
- decoder_input_ids,
- attention_mask=decoder_attention_mask,
- encoder_hidden_states=encoder_outputs[0],
- encoder_attention_mask=attention_mask,
- head_mask=decoder_head_mask,
- encoder_head_mask=head_mask,
- past_key_values=past_key_values,
- inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- if not return_dict:
- return decoder_outputs + encoder_outputs
- return TFLEDSeq2SeqModelOutput(
- last_hidden_state=decoder_outputs.last_hidden_state,
- past_key_values=decoder_outputs.past_key_values,
- decoder_hidden_states=decoder_outputs.hidden_states,
- decoder_attentions=decoder_outputs.attentions,
- cross_attentions=decoder_outputs.cross_attentions,
- encoder_last_hidden_state=encoder_outputs.last_hidden_state,
- encoder_hidden_states=encoder_outputs.hidden_states,
- encoder_attentions=encoder_outputs.attentions,
- encoder_global_attentions=encoder_outputs.global_attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- # The shared/tied weights expect to be in the model base namespace
- # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
- # the current one.
- with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
- self.shared.build(None)
- if getattr(self, "encoder", None) is not None:
- with tf.name_scope(self.encoder.name):
- self.encoder.build(None)
- if getattr(self, "decoder", None) is not None:
- with tf.name_scope(self.decoder.name):
- self.decoder.build(None)
- @add_start_docstrings(
- "The bare LED Model outputting raw hidden-states without any specific head on top.",
- LED_START_DOCSTRING,
- )
- class TFLEDModel(TFLEDPreTrainedModel):
- def __init__(self, config, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.led = TFLEDMainLayer(config, name="led")
- def get_encoder(self):
- return self.led.encoder
- def get_decoder(self):
- return self.led.decoder
- @unpack_inputs
- @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TFLEDSeq2SeqModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: tf.Tensor | None = None,
- decoder_input_ids: tf.Tensor | None = None,
- decoder_attention_mask: tf.Tensor | None = None,
- head_mask: tf.Tensor | None = None,
- decoder_head_mask: tf.Tensor | None = None,
- encoder_outputs: tf.Tensor | None = None,
- global_attention_mask: tf.Tensor | None = None,
- past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
- inputs_embeds: tf.Tensor | None = None,
- decoder_inputs_embeds: tf.Tensor | None = None,
- use_cache: bool | None = None,
- output_attentions: bool | None = None,
- output_hidden_states: bool | None = None,
- return_dict: bool | None = None,
- training: bool = False,
- **kwargs,
- ) -> Tuple[tf.Tensor] | TFLEDSeq2SeqModelOutput:
- outputs = self.led(
- input_ids=input_ids,
- attention_mask=attention_mask,
- decoder_input_ids=decoder_input_ids,
- decoder_attention_mask=decoder_attention_mask,
- encoder_outputs=encoder_outputs,
- global_attention_mask=global_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- return outputs
- def serving_output(self, output):
- pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
- dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
- dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
- cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
- enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
- enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
- enc_g_attns = tf.convert_to_tensor(output.encoder_global_attentions) if self.config.output_attentions else None
- return TFLEDSeq2SeqModelOutput(
- last_hidden_state=output.last_hidden_state,
- past_key_values=pkv,
- decoder_hidden_states=dec_hs,
- decoder_attentions=dec_attns,
- cross_attentions=cross_attns,
- encoder_last_hidden_state=output.encoder_last_hidden_state,
- encoder_hidden_states=enc_hs,
- encoder_attentions=enc_attns,
- encoder_global_attentions=enc_g_attns,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "led", None) is not None:
- with tf.name_scope(self.led.name):
- self.led.build(None)
- # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
- class BiasLayer(keras.layers.Layer):
- """
- Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
- so all weights have to be registered in a layer.
- """
- def __init__(self, shape, initializer, trainable, name, **kwargs):
- super().__init__(name=name, **kwargs)
- # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
- # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
- # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
- self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
- def call(self, x):
- return x + self.bias
- @add_start_docstrings(
- "The LED Model with a language modeling head. Can be used for summarization.",
- LED_START_DOCSTRING,
- )
- class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
- _keys_to_ignore_on_load_unexpected = [
- r"led.encoder.embed_tokens.weight",
- r"led.decoder.embed_tokens.weight",
- ]
- def __init__(self, config, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.led = TFLEDMainLayer(config, name="led")
- self.use_cache = config.use_cache
- # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
- self.bias_layer = BiasLayer(
- name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
- )
- # TODO (Joao): investigate why LED has numerical issues in XLA generate
- self.supports_xla_generation = False
- def get_decoder(self):
- return self.led.decoder
- def get_encoder(self):
- return self.led.encoder
- def get_bias(self):
- return {"final_logits_bias": self.bias_layer.bias}
- def set_bias(self, value):
- # Replaces the existing layers containing bias for correct (de)serialization.
- vocab_size = value["final_logits_bias"].shape[-1]
- self.bias_layer = BiasLayer(
- name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
- )
- self.bias_layer.bias.assign(value["final_logits_bias"])
- def get_output_embeddings(self):
- return self.get_input_embeddings()
- def set_output_embeddings(self, value):
- self.set_input_embeddings(value)
- @unpack_inputs
- @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=TFLEDSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- decoder_input_ids: np.ndarray | tf.Tensor | None = None,
- decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- decoder_head_mask: np.ndarray | tf.Tensor | None = None,
- encoder_outputs: TFLEDEncoderBaseModelOutput | None = None,
- global_attention_mask: np.ndarray | tf.Tensor | None = None,
- past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
- use_cache: bool | None = None,
- output_attentions: bool | None = None,
- output_hidden_states: bool | None = None,
- return_dict: bool | None = None,
- labels: tf.Tensor | None = None,
- training: bool = False,
- ) -> Tuple[tf.Tensor] | TFLEDSeq2SeqLMOutput:
- """
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, TFLEDForConditionalGeneration
- >>> import tensorflow as tf
- >>> mname = "allenai/led-base-16384"
- >>> tokenizer = AutoTokenizer.from_pretrained(mname)
- >>> TXT = "My friends are <mask> but they eat too many carbs."
- >>> model = TFLEDForConditionalGeneration.from_pretrained(mname)
- >>> batch = tokenizer([TXT], return_tensors="tf")
- >>> logits = model(inputs=batch.input_ids).logits
- >>> probs = tf.nn.softmax(logits[0])
- >>> # probs[5] is associated with the mask token
- ```"""
- if labels is not None:
- use_cache = False
- if decoder_input_ids is None and decoder_inputs_embeds is None:
- decoder_input_ids = shift_tokens_right(
- labels, self.config.pad_token_id, self.config.decoder_start_token_id
- )
- outputs = self.led(
- input_ids,
- attention_mask=attention_mask,
- decoder_input_ids=decoder_input_ids,
- decoder_attention_mask=decoder_attention_mask,
- encoder_outputs=encoder_outputs,
- global_attention_mask=global_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- lm_logits = tf.matmul(outputs[0], self.led.shared.weights, transpose_b=True)
- lm_logits = self.bias_layer(lm_logits)
- masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
- if not return_dict:
- output = (lm_logits,) + outputs[1:]
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
- return TFLEDSeq2SeqLMOutput(
- loss=masked_lm_loss,
- logits=lm_logits,
- past_key_values=outputs.past_key_values, # index 1 of d outputs
- decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
- decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
- cross_attentions=outputs.cross_attentions, # index 4 of d outputs
- encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
- encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
- encoder_attentions=outputs.encoder_attentions, # 2 of e out
- encoder_global_attentions=outputs.encoder_global_attentions,
- )
- def serving_output(self, output):
- pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
- dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
- dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
- cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
- enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
- enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
- enc_g_attns = tf.convert_to_tensor(output.encoder_global_attentions) if self.config.output_attentions else None
- return TFLEDSeq2SeqLMOutput(
- logits=output.logits,
- past_key_values=pkv,
- decoder_hidden_states=dec_hs,
- decoder_attentions=dec_attns,
- cross_attentions=cross_attns,
- encoder_last_hidden_state=output.encoder_last_hidden_state,
- encoder_hidden_states=enc_hs,
- encoder_attentions=enc_attns,
- encoder_global_attentions=enc_g_attns,
- )
- def prepare_inputs_for_generation(
- self,
- decoder_input_ids,
- past_key_values=None,
- attention_mask=None,
- head_mask=None,
- decoder_head_mask=None,
- use_cache=None,
- encoder_outputs=None,
- **kwargs,
- ):
- # cut decoder_input_ids if past is used
- if past_key_values is not None:
- decoder_input_ids = decoder_input_ids[:, -1:]
- return {
- "input_ids": None, # encoder_outputs is defined. input_ids not needed
- "encoder_outputs": encoder_outputs,
- "past_key_values": past_key_values,
- "decoder_input_ids": decoder_input_ids,
- "attention_mask": attention_mask,
- "head_mask": head_mask,
- "decoder_head_mask": decoder_head_mask,
- "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
- }
- def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
- return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
- def hf_compute_loss(self, labels, logits):
- """CrossEntropyLoss that ignores pad tokens"""
- loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
- if self.config.tf_legacy_loss:
- melted_labels = tf.reshape(labels, (-1,))
- active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
- reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
- labels = tf.boolean_mask(melted_labels, active_loss)
- return loss_fn(labels, reduced_logits)
- # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
- unmasked_loss = loss_fn(tf.nn.relu(labels), logits)
- # make sure only non-padding labels affect the loss
- loss_mask = tf.cast(labels != self.config.pad_token_id, dtype=unmasked_loss.dtype)
- masked_loss = unmasked_loss * loss_mask
- reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask)
- return tf.reshape(reduced_masked_loss, (1,))
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "led", None) is not None:
- with tf.name_scope(self.led.name):
- self.led.build(None)
- if getattr(self, "bias_layer", None) is not None:
- with tf.name_scope(self.bias_layer.name):
- self.bias_layer.build(None)
|