| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735 |
- # coding=utf-8
- # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch LeViT model."""
- import itertools
- from dataclasses import dataclass
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...modeling_outputs import (
- BaseModelOutputWithNoAttention,
- BaseModelOutputWithPoolingAndNoAttention,
- ImageClassifierOutputWithNoAttention,
- ModelOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
- from .configuration_levit import LevitConfig
- logger = logging.get_logger(__name__)
- # General docstring
- _CONFIG_FOR_DOC = "LevitConfig"
- # Base docstring
- _CHECKPOINT_FOR_DOC = "facebook/levit-128S"
- _EXPECTED_OUTPUT_SHAPE = [1, 16, 384]
- # Image classification docstring
- _IMAGE_CLASS_CHECKPOINT = "facebook/levit-128S"
- _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
- @dataclass
- class LevitForImageClassificationWithTeacherOutput(ModelOutput):
- """
- Output type of [`LevitForImageClassificationWithTeacher`].
- Args:
- logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
- Prediction scores as the average of the `cls_logits` and `distillation_logits`.
- cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
- Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
- class token).
- distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
- Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
- distillation token).
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
- plus the initial embedding outputs.
- """
- logits: torch.FloatTensor = None
- cls_logits: torch.FloatTensor = None
- distillation_logits: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- class LevitConvEmbeddings(nn.Module):
- """
- LeViT Conv Embeddings with Batch Norm, used in the initial patch embedding layer.
- """
- def __init__(
- self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bn_weight_init=1
- ):
- super().__init__()
- self.convolution = nn.Conv2d(
- in_channels, out_channels, kernel_size, stride, padding, dilation=dilation, groups=groups, bias=False
- )
- self.batch_norm = nn.BatchNorm2d(out_channels)
- def forward(self, embeddings):
- embeddings = self.convolution(embeddings)
- embeddings = self.batch_norm(embeddings)
- return embeddings
- class LevitPatchEmbeddings(nn.Module):
- """
- LeViT patch embeddings, for final embeddings to be passed to transformer blocks. It consists of multiple
- `LevitConvEmbeddings`.
- """
- def __init__(self, config):
- super().__init__()
- self.embedding_layer_1 = LevitConvEmbeddings(
- config.num_channels, config.hidden_sizes[0] // 8, config.kernel_size, config.stride, config.padding
- )
- self.activation_layer_1 = nn.Hardswish()
- self.embedding_layer_2 = LevitConvEmbeddings(
- config.hidden_sizes[0] // 8, config.hidden_sizes[0] // 4, config.kernel_size, config.stride, config.padding
- )
- self.activation_layer_2 = nn.Hardswish()
- self.embedding_layer_3 = LevitConvEmbeddings(
- config.hidden_sizes[0] // 4, config.hidden_sizes[0] // 2, config.kernel_size, config.stride, config.padding
- )
- self.activation_layer_3 = nn.Hardswish()
- self.embedding_layer_4 = LevitConvEmbeddings(
- config.hidden_sizes[0] // 2, config.hidden_sizes[0], config.kernel_size, config.stride, config.padding
- )
- self.num_channels = config.num_channels
- def forward(self, pixel_values):
- num_channels = pixel_values.shape[1]
- if num_channels != self.num_channels:
- raise ValueError(
- "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
- )
- embeddings = self.embedding_layer_1(pixel_values)
- embeddings = self.activation_layer_1(embeddings)
- embeddings = self.embedding_layer_2(embeddings)
- embeddings = self.activation_layer_2(embeddings)
- embeddings = self.embedding_layer_3(embeddings)
- embeddings = self.activation_layer_3(embeddings)
- embeddings = self.embedding_layer_4(embeddings)
- return embeddings.flatten(2).transpose(1, 2)
- class MLPLayerWithBN(nn.Module):
- def __init__(self, input_dim, output_dim, bn_weight_init=1):
- super().__init__()
- self.linear = nn.Linear(in_features=input_dim, out_features=output_dim, bias=False)
- self.batch_norm = nn.BatchNorm1d(output_dim)
- def forward(self, hidden_state):
- hidden_state = self.linear(hidden_state)
- hidden_state = self.batch_norm(hidden_state.flatten(0, 1)).reshape_as(hidden_state)
- return hidden_state
- class LevitSubsample(nn.Module):
- def __init__(self, stride, resolution):
- super().__init__()
- self.stride = stride
- self.resolution = resolution
- def forward(self, hidden_state):
- batch_size, _, channels = hidden_state.shape
- hidden_state = hidden_state.view(batch_size, self.resolution, self.resolution, channels)[
- :, :: self.stride, :: self.stride
- ].reshape(batch_size, -1, channels)
- return hidden_state
- class LevitAttention(nn.Module):
- def __init__(self, hidden_sizes, key_dim, num_attention_heads, attention_ratio, resolution):
- super().__init__()
- self.num_attention_heads = num_attention_heads
- self.scale = key_dim**-0.5
- self.key_dim = key_dim
- self.attention_ratio = attention_ratio
- self.out_dim_keys_values = attention_ratio * key_dim * num_attention_heads + key_dim * num_attention_heads * 2
- self.out_dim_projection = attention_ratio * key_dim * num_attention_heads
- self.queries_keys_values = MLPLayerWithBN(hidden_sizes, self.out_dim_keys_values)
- self.activation = nn.Hardswish()
- self.projection = MLPLayerWithBN(self.out_dim_projection, hidden_sizes, bn_weight_init=0)
- points = list(itertools.product(range(resolution), range(resolution)))
- len_points = len(points)
- attention_offsets, indices = {}, []
- for p1 in points:
- for p2 in points:
- offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
- if offset not in attention_offsets:
- attention_offsets[offset] = len(attention_offsets)
- indices.append(attention_offsets[offset])
- self.attention_bias_cache = {}
- self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
- self.register_buffer(
- "attention_bias_idxs", torch.LongTensor(indices).view(len_points, len_points), persistent=False
- )
- @torch.no_grad()
- def train(self, mode=True):
- super().train(mode)
- if mode and self.attention_bias_cache:
- self.attention_bias_cache = {} # clear ab cache
- def get_attention_biases(self, device):
- if self.training:
- return self.attention_biases[:, self.attention_bias_idxs]
- else:
- device_key = str(device)
- if device_key not in self.attention_bias_cache:
- self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
- return self.attention_bias_cache[device_key]
- def forward(self, hidden_state):
- batch_size, seq_length, _ = hidden_state.shape
- queries_keys_values = self.queries_keys_values(hidden_state)
- query, key, value = queries_keys_values.view(batch_size, seq_length, self.num_attention_heads, -1).split(
- [self.key_dim, self.key_dim, self.attention_ratio * self.key_dim], dim=3
- )
- query = query.permute(0, 2, 1, 3)
- key = key.permute(0, 2, 1, 3)
- value = value.permute(0, 2, 1, 3)
- attention = query @ key.transpose(-2, -1) * self.scale + self.get_attention_biases(hidden_state.device)
- attention = attention.softmax(dim=-1)
- hidden_state = (attention @ value).transpose(1, 2).reshape(batch_size, seq_length, self.out_dim_projection)
- hidden_state = self.projection(self.activation(hidden_state))
- return hidden_state
- class LevitAttentionSubsample(nn.Module):
- def __init__(
- self,
- input_dim,
- output_dim,
- key_dim,
- num_attention_heads,
- attention_ratio,
- stride,
- resolution_in,
- resolution_out,
- ):
- super().__init__()
- self.num_attention_heads = num_attention_heads
- self.scale = key_dim**-0.5
- self.key_dim = key_dim
- self.attention_ratio = attention_ratio
- self.out_dim_keys_values = attention_ratio * key_dim * num_attention_heads + key_dim * num_attention_heads
- self.out_dim_projection = attention_ratio * key_dim * num_attention_heads
- self.resolution_out = resolution_out
- # resolution_in is the intial resolution, resoloution_out is final resolution after downsampling
- self.keys_values = MLPLayerWithBN(input_dim, self.out_dim_keys_values)
- self.queries_subsample = LevitSubsample(stride, resolution_in)
- self.queries = MLPLayerWithBN(input_dim, key_dim * num_attention_heads)
- self.activation = nn.Hardswish()
- self.projection = MLPLayerWithBN(self.out_dim_projection, output_dim)
- self.attention_bias_cache = {}
- points = list(itertools.product(range(resolution_in), range(resolution_in)))
- points_ = list(itertools.product(range(resolution_out), range(resolution_out)))
- len_points, len_points_ = len(points), len(points_)
- attention_offsets, indices = {}, []
- for p1 in points_:
- for p2 in points:
- size = 1
- offset = (abs(p1[0] * stride - p2[0] + (size - 1) / 2), abs(p1[1] * stride - p2[1] + (size - 1) / 2))
- if offset not in attention_offsets:
- attention_offsets[offset] = len(attention_offsets)
- indices.append(attention_offsets[offset])
- self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
- self.register_buffer(
- "attention_bias_idxs", torch.LongTensor(indices).view(len_points_, len_points), persistent=False
- )
- @torch.no_grad()
- def train(self, mode=True):
- super().train(mode)
- if mode and self.attention_bias_cache:
- self.attention_bias_cache = {} # clear ab cache
- def get_attention_biases(self, device):
- if self.training:
- return self.attention_biases[:, self.attention_bias_idxs]
- else:
- device_key = str(device)
- if device_key not in self.attention_bias_cache:
- self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
- return self.attention_bias_cache[device_key]
- def forward(self, hidden_state):
- batch_size, seq_length, _ = hidden_state.shape
- key, value = (
- self.keys_values(hidden_state)
- .view(batch_size, seq_length, self.num_attention_heads, -1)
- .split([self.key_dim, self.attention_ratio * self.key_dim], dim=3)
- )
- key = key.permute(0, 2, 1, 3)
- value = value.permute(0, 2, 1, 3)
- query = self.queries(self.queries_subsample(hidden_state))
- query = query.view(batch_size, self.resolution_out**2, self.num_attention_heads, self.key_dim).permute(
- 0, 2, 1, 3
- )
- attention = query @ key.transpose(-2, -1) * self.scale + self.get_attention_biases(hidden_state.device)
- attention = attention.softmax(dim=-1)
- hidden_state = (attention @ value).transpose(1, 2).reshape(batch_size, -1, self.out_dim_projection)
- hidden_state = self.projection(self.activation(hidden_state))
- return hidden_state
- class LevitMLPLayer(nn.Module):
- """
- MLP Layer with `2X` expansion in contrast to ViT with `4X`.
- """
- def __init__(self, input_dim, hidden_dim):
- super().__init__()
- self.linear_up = MLPLayerWithBN(input_dim, hidden_dim)
- self.activation = nn.Hardswish()
- self.linear_down = MLPLayerWithBN(hidden_dim, input_dim)
- def forward(self, hidden_state):
- hidden_state = self.linear_up(hidden_state)
- hidden_state = self.activation(hidden_state)
- hidden_state = self.linear_down(hidden_state)
- return hidden_state
- class LevitResidualLayer(nn.Module):
- """
- Residual Block for LeViT
- """
- def __init__(self, module, drop_rate):
- super().__init__()
- self.module = module
- self.drop_rate = drop_rate
- def forward(self, hidden_state):
- if self.training and self.drop_rate > 0:
- rnd = torch.rand(hidden_state.size(0), 1, 1, device=hidden_state.device)
- rnd = rnd.ge_(self.drop_rate).div(1 - self.drop_rate).detach()
- hidden_state = hidden_state + self.module(hidden_state) * rnd
- return hidden_state
- else:
- hidden_state = hidden_state + self.module(hidden_state)
- return hidden_state
- class LevitStage(nn.Module):
- """
- LeViT Stage consisting of `LevitMLPLayer` and `LevitAttention` layers.
- """
- def __init__(
- self,
- config,
- idx,
- hidden_sizes,
- key_dim,
- depths,
- num_attention_heads,
- attention_ratio,
- mlp_ratio,
- down_ops,
- resolution_in,
- ):
- super().__init__()
- self.layers = []
- self.config = config
- self.resolution_in = resolution_in
- # resolution_in is the intial resolution, resolution_out is final resolution after downsampling
- for _ in range(depths):
- self.layers.append(
- LevitResidualLayer(
- LevitAttention(hidden_sizes, key_dim, num_attention_heads, attention_ratio, resolution_in),
- self.config.drop_path_rate,
- )
- )
- if mlp_ratio > 0:
- hidden_dim = hidden_sizes * mlp_ratio
- self.layers.append(
- LevitResidualLayer(LevitMLPLayer(hidden_sizes, hidden_dim), self.config.drop_path_rate)
- )
- if down_ops[0] == "Subsample":
- self.resolution_out = (self.resolution_in - 1) // down_ops[5] + 1
- self.layers.append(
- LevitAttentionSubsample(
- *self.config.hidden_sizes[idx : idx + 2],
- key_dim=down_ops[1],
- num_attention_heads=down_ops[2],
- attention_ratio=down_ops[3],
- stride=down_ops[5],
- resolution_in=resolution_in,
- resolution_out=self.resolution_out,
- )
- )
- self.resolution_in = self.resolution_out
- if down_ops[4] > 0:
- hidden_dim = self.config.hidden_sizes[idx + 1] * down_ops[4]
- self.layers.append(
- LevitResidualLayer(
- LevitMLPLayer(self.config.hidden_sizes[idx + 1], hidden_dim), self.config.drop_path_rate
- )
- )
- self.layers = nn.ModuleList(self.layers)
- def get_resolution(self):
- return self.resolution_in
- def forward(self, hidden_state):
- for layer in self.layers:
- hidden_state = layer(hidden_state)
- return hidden_state
- class LevitEncoder(nn.Module):
- """
- LeViT Encoder consisting of multiple `LevitStage` stages.
- """
- def __init__(self, config):
- super().__init__()
- self.config = config
- resolution = self.config.image_size // self.config.patch_size
- self.stages = []
- self.config.down_ops.append([""])
- for stage_idx in range(len(config.depths)):
- stage = LevitStage(
- config,
- stage_idx,
- config.hidden_sizes[stage_idx],
- config.key_dim[stage_idx],
- config.depths[stage_idx],
- config.num_attention_heads[stage_idx],
- config.attention_ratio[stage_idx],
- config.mlp_ratio[stage_idx],
- config.down_ops[stage_idx],
- resolution,
- )
- resolution = stage.get_resolution()
- self.stages.append(stage)
- self.stages = nn.ModuleList(self.stages)
- def forward(self, hidden_state, output_hidden_states=False, return_dict=True):
- all_hidden_states = () if output_hidden_states else None
- for stage in self.stages:
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_state,)
- hidden_state = stage(hidden_state)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_state,)
- if not return_dict:
- return tuple(v for v in [hidden_state, all_hidden_states] if v is not None)
- return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=all_hidden_states)
- class LevitClassificationLayer(nn.Module):
- """
- LeViT Classification Layer
- """
- def __init__(self, input_dim, output_dim):
- super().__init__()
- self.batch_norm = nn.BatchNorm1d(input_dim)
- self.linear = nn.Linear(input_dim, output_dim)
- def forward(self, hidden_state):
- hidden_state = self.batch_norm(hidden_state)
- logits = self.linear(hidden_state)
- return logits
- class LevitPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = LevitConfig
- base_model_prefix = "levit"
- main_input_name = "pixel_values"
- _no_split_modules = ["LevitResidualLayer"]
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Conv2d)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, (nn.BatchNorm1d, nn.BatchNorm2d)):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- LEVIT_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`LevitConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- LEVIT_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
- [`LevitImageProcessor.__call__`] for details.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare Levit model outputting raw features without any specific head on top.",
- LEVIT_START_DOCSTRING,
- )
- class LevitModel(LevitPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.config = config
- self.patch_embeddings = LevitPatchEmbeddings(config)
- self.encoder = LevitEncoder(config)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPoolingAndNoAttention,
- config_class=_CONFIG_FOR_DOC,
- modality="vision",
- expected_output=_EXPECTED_OUTPUT_SHAPE,
- )
- def forward(
- self,
- pixel_values: torch.FloatTensor = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if pixel_values is None:
- raise ValueError("You have to specify pixel_values")
- embeddings = self.patch_embeddings(pixel_values)
- encoder_outputs = self.encoder(
- embeddings,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- last_hidden_state = encoder_outputs[0]
- # global average pooling, (batch_size, seq_length, hidden_sizes) -> (batch_size, hidden_sizes)
- pooled_output = last_hidden_state.mean(dim=1)
- if not return_dict:
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndNoAttention(
- last_hidden_state=last_hidden_state,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- )
- @add_start_docstrings(
- """
- Levit Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
- ImageNet.
- """,
- LEVIT_START_DOCSTRING,
- )
- class LevitForImageClassification(LevitPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.config = config
- self.num_labels = config.num_labels
- self.levit = LevitModel(config)
- # Classifier head
- self.classifier = (
- LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
- if config.num_labels > 0
- else torch.nn.Identity()
- )
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_IMAGE_CLASS_CHECKPOINT,
- output_type=ImageClassifierOutputWithNoAttention,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
- )
- def forward(
- self,
- pixel_values: torch.FloatTensor = None,
- labels: Optional[torch.LongTensor] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
- sequence_output = outputs[0]
- sequence_output = sequence_output.mean(1)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return ImageClassifierOutputWithNoAttention(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- )
- @add_start_docstrings(
- """
- LeViT Model transformer with image classification heads on top (a linear layer on top of the final hidden state and
- a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning::
- This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
- supported.
- """,
- LEVIT_START_DOCSTRING,
- )
- class LevitForImageClassificationWithTeacher(LevitPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.config = config
- self.num_labels = config.num_labels
- self.levit = LevitModel(config)
- # Classifier head
- self.classifier = (
- LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
- if config.num_labels > 0
- else torch.nn.Identity()
- )
- self.classifier_distill = (
- LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
- if config.num_labels > 0
- else torch.nn.Identity()
- )
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_IMAGE_CLASS_CHECKPOINT,
- output_type=LevitForImageClassificationWithTeacherOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
- )
- def forward(
- self,
- pixel_values: torch.FloatTensor = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, LevitForImageClassificationWithTeacherOutput]:
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
- sequence_output = outputs[0]
- sequence_output = sequence_output.mean(1)
- cls_logits, distill_logits = self.classifier(sequence_output), self.classifier_distill(sequence_output)
- logits = (cls_logits + distill_logits) / 2
- if not return_dict:
- output = (logits, cls_logits, distill_logits) + outputs[2:]
- return output
- return LevitForImageClassificationWithTeacherOutput(
- logits=logits,
- cls_logits=cls_logits,
- distillation_logits=distill_logits,
- hidden_states=outputs.hidden_states,
- )
|