| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615 |
- # coding=utf-8
- # Copyright 2023 the HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch Llava model."""
- from dataclasses import dataclass
- from typing import List, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_outputs import ModelOutput
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from ..auto import AutoModel, AutoModelForCausalLM
- from .configuration_llava import LlavaConfig
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "LlavaConfig"
- # Base docstring
- _CHECKPOINT_FOR_DOC = "llava-hf/llava-1.5-7b-hf"
- @dataclass
- class LlavaCausalLMOutputWithPast(ModelOutput):
- """
- Base class for Llava causal language model (or autoregressive) outputs.
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Language modeling loss (for next-token prediction).
- logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
- Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
- `past_key_values` input) to speed up sequential decoding.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- image_hidden_states (`torch.FloatTensor`, *optional*):
- A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
- image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
- """
- loss: Optional[torch.FloatTensor] = None
- logits: torch.FloatTensor = None
- past_key_values: Optional[List[torch.FloatTensor]] = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- image_hidden_states: Optional[torch.FloatTensor] = None
- class LlavaMultiModalProjector(nn.Module):
- def __init__(self, config: LlavaConfig):
- super().__init__()
- self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
- self.act = ACT2FN[config.projector_hidden_act]
- self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
- def forward(self, image_features):
- hidden_states = self.linear_1(image_features)
- hidden_states = self.act(hidden_states)
- hidden_states = self.linear_2(hidden_states)
- return hidden_states
- LLAVA_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`LlavaConfig`] or [`LlavaVisionConfig`]):
- Model configuration class with all the parameters of the model. Initializing with a config file does not
- load the weights associated with the model, only the configuration. Check out the
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- @add_start_docstrings(
- "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
- LLAVA_START_DOCSTRING,
- )
- class LlavaPreTrainedModel(PreTrainedModel):
- config_class = LlavaConfig
- base_model_prefix = "model"
- supports_gradient_checkpointing = True
- _no_split_modules = ["LlavaVisionAttention"]
- _skip_keys_device_placement = "past_key_values"
- _supports_cache_class = True
- _supports_flash_attn_2 = True
- _supports_sdpa = True
- def _init_weights(self, module):
- # important: this ported version of Llava isn't meant for training from scratch - only
- # inference and fine-tuning - so the proper init weights code has been removed - the original codebase
- # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
- std = (
- self.config.initializer_range
- if hasattr(self.config, "initializer_range")
- else self.config.text_config.initializer_range
- )
- if hasattr(module, "class_embedding"):
- module.class_embedding.data.normal_(mean=0.0, std=std)
- if isinstance(module, (nn.Linear, nn.Conv2d)):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- LLAVA_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
- The tensors corresponding to the input images. Pixel values can be obtained using
- [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses
- [`CLIPImageProcessor`] for processing images).
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
- `past_key_values`).
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
- information on the default strategy.
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- vision_feature_layer (`int`, *optional*, defaults to -2):
- The index of the layer to select the vision feature.
- vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
- The feature selection strategy used to select the vision feature from the vision backbone.
- Can be one of `"default"` or `"full"`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
- Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
- this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
- the complete sequence length.
- """
- @add_start_docstrings(
- """The LLAVA model which consists of a vision backbone and a language model.""",
- LLAVA_START_DOCSTRING,
- )
- class LlavaForConditionalGeneration(LlavaPreTrainedModel, GenerationMixin):
- def __init__(self, config: LlavaConfig):
- super().__init__(config)
- self.vision_tower = AutoModel.from_config(config.vision_config)
- self.multi_modal_projector = LlavaMultiModalProjector(config)
- self.vocab_size = config.text_config.vocab_size
- self.language_model = AutoModelForCausalLM.from_config(config.text_config)
- self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
- self.post_init()
- def get_input_embeddings(self):
- return self.language_model.get_input_embeddings()
- def set_input_embeddings(self, value):
- self.language_model.set_input_embeddings(value)
- def get_output_embeddings(self):
- return self.language_model.get_output_embeddings()
- def set_output_embeddings(self, new_embeddings):
- self.language_model.set_output_embeddings(new_embeddings)
- def set_decoder(self, decoder):
- self.language_model.set_decoder(decoder)
- def get_decoder(self):
- return self.language_model.get_decoder()
- def tie_weights(self):
- return self.language_model.tie_weights()
- def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
- model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
- # update vocab size
- self.config.text_config.vocab_size = model_embeds.num_embeddings
- self.vocab_size = model_embeds.num_embeddings
- return model_embeds
- def get_image_features(
- self, pixel_values: torch.FloatTensor, vision_feature_layer: int, vision_feature_select_strategy: str
- ):
- """
- Obtains image last hidden states from the vision tower and apply multimodal projection.
- Args:
- pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
- The tensors corresponding to the input images.
- vision_feature_layer (`int`):
- The index of the layer to select the vision feature.
- vision_feature_select_strategy (`str`):
- The feature selection strategy used to select the vision feature from the vision backbone.
- Can be one of `"default"` or `"full"`
- Returns:
- image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
- """
- image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
- # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
- selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
- if vision_feature_select_strategy == "default":
- selected_image_feature = selected_image_feature[:, 1:]
- elif vision_feature_select_strategy == "full":
- selected_image_feature = selected_image_feature
- else:
- raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
- image_features = self.multi_modal_projector(selected_image_feature)
- return image_features
- def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
- num_images, num_image_patches, embed_dim = image_features.shape
- batch_size, sequence_length = input_ids.shape
- left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
- # 1. Create a mask to know where special image tokens are
- special_image_token_mask = input_ids == self.config.image_token_index
- num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
- # Compute the maximum embed dimension
- max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
- batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
- # 2. Compute the positions where text should be written
- # Calculate new positions for text tokens in merged image-text sequence.
- # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
- # `torch.cumsum` computes how each image token shifts subsequent text token positions.
- # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
- new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
- nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
- if left_padding:
- new_token_positions += nb_image_pad[:, None] # offset for left padding
- text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
- # 3. Create the full embedding, already padded to the maximum position
- final_embedding = torch.zeros(
- batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
- )
- final_attention_mask = torch.zeros(
- batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
- )
- if labels is not None:
- final_labels = torch.full(
- (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
- )
- # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
- # set the corresponding tensors into their correct target device.
- target_device = inputs_embeds.device
- batch_indices, non_image_indices, text_to_overwrite = (
- batch_indices.to(target_device),
- non_image_indices.to(target_device),
- text_to_overwrite.to(target_device),
- )
- attention_mask = attention_mask.to(target_device)
- # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
- # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
- final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
- final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
- if labels is not None:
- final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
- # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
- image_to_overwrite = torch.full(
- (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
- )
- image_to_overwrite[batch_indices, text_to_overwrite] = False
- image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
- if image_to_overwrite.sum() != image_features.shape[:-1].numel():
- raise ValueError(
- f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
- f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
- )
- final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
- final_attention_mask |= image_to_overwrite
- position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
- # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
- batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
- indices_to_mask = new_token_positions[batch_indices, pad_indices]
- final_embedding[batch_indices, indices_to_mask] = 0
- if labels is None:
- final_labels = None
- return final_embedding, final_attention_mask, final_labels, position_ids
- @add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- pixel_values: torch.FloatTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- vision_feature_layer: Optional[int] = None,
- vision_feature_select_strategy: Optional[str] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- num_logits_to_keep: int = 0,
- ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
- r"""
- Args:
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
- num_logits_to_keep (`int`, *optional*):
- Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
- `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
- token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
- Returns:
- Example:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, LlavaForConditionalGeneration
- >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
- >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
- >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
- >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(images=image, text=prompt, return_tensors="pt")
- >>> # Generate
- >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
- >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
- "USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- vision_feature_layer = (
- vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
- )
- vision_feature_select_strategy = (
- vision_feature_select_strategy
- if vision_feature_select_strategy is not None
- else self.config.vision_feature_select_strategy
- )
- if (input_ids is None) ^ (inputs_embeds is not None):
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
- if pixel_values is not None and inputs_embeds is not None:
- raise ValueError(
- "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
- )
- legacy_processing = False
- if inputs_embeds is None:
- inputs_embeds = self.get_input_embeddings()(input_ids)
- # if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
- # not very reliable, but we don't expect one to actually pass 500+ images for one prompt
- # In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
- legacy_processing = (
- (input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
- ) or (input_ids.shape[-1] == 1 and pixel_values is not None)
- image_features = None
- if pixel_values is not None:
- image_features = self.get_image_features(
- pixel_values=pixel_values,
- vision_feature_layer=vision_feature_layer,
- vision_feature_select_strategy=vision_feature_select_strategy,
- )
- if legacy_processing:
- logger.warning_once(
- "Expanding inputs for image tokens in LLaVa should be done in processing. "
- "Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
- "with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
- "Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
- )
- # prefill stage vs decoding stage (legacy behavior copied)
- if input_ids.shape[1] != 1:
- inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
- image_features, inputs_embeds, input_ids, attention_mask, labels
- )
- cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
- else:
- # Retrieve the first layer to inspect the logits and mask out the hidden states
- # that are set to 0
- first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
- # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
- batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
- # Get the target length
- target_length = input_ids.shape[1]
- past_length = first_layer_past_key_value.shape[-1]
- extended_attention_mask = torch.ones(
- (attention_mask.shape[0], past_length),
- dtype=attention_mask.dtype,
- device=attention_mask.device,
- )
- # Filter out only the tokens that can be un-attended, this can happen
- # if one uses Llava + Fused modules where the cache on the
- # first iteration is already big enough, or if one passes custom cache
- valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
- new_batch_index = batch_index[valid_indices]
- new_non_attended_tokens = non_attended_tokens[valid_indices]
- # Zero-out the places where we don't need to attend
- extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
- attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
- position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
- cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[-target_length:]
- # TODO: @raushan retain only the new behavior after v4.47
- elif image_features is not None:
- n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
- n_image_features = image_features.shape[0] * image_features.shape[1]
- if n_image_tokens != n_image_features:
- raise ValueError(
- f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
- )
- special_image_mask = (
- (input_ids == self.config.image_token_index)
- .unsqueeze(-1)
- .expand_as(inputs_embeds)
- .to(inputs_embeds.device)
- )
- image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
- inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
- outputs = self.language_model(
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- cache_position=cache_position,
- num_logits_to_keep=num_logits_to_keep,
- )
- logits = outputs[0]
- loss = None
- if labels is not None:
- # Shift so that tokens < n predict n
- if attention_mask is not None:
- # we use the input attention mask to shift the logits and labels, because it is 2D.
- # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
- shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
- shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
- shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
- else:
- shift_logits = logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = nn.CrossEntropyLoss()
- loss = loss_fct(
- shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
- )
- if not return_dict:
- output = (logits,) + outputs[1:]
- return (loss,) + output if loss is not None else output
- return LlavaCausalLMOutputWithPast(
- loss=loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- image_hidden_states=image_features if pixel_values is not None else None,
- )
- def prepare_inputs_for_generation(
- self,
- input_ids,
- past_key_values=None,
- inputs_embeds=None,
- pixel_values=None,
- attention_mask=None,
- cache_position=None,
- num_logits_to_keep=None,
- **kwargs,
- ):
- # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
- model_inputs = self.language_model.prepare_inputs_for_generation(
- input_ids,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- attention_mask=attention_mask,
- cache_position=cache_position,
- num_logits_to_keep=num_logits_to_keep,
- **kwargs,
- )
- if cache_position[0] == 0:
- # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
- # Otherwise we need pixel values to be passed to model
- model_inputs["pixel_values"] = pixel_values
- return model_inputs
|