| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728 |
- # coding=utf-8
- # Copyright Studio-Ouisa and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization classes for LUKE."""
- import itertools
- import json
- import os
- from collections.abc import Mapping
- from functools import lru_cache
- from typing import Dict, List, Optional, Tuple, Union
- import numpy as np
- import regex as re
- from ...tokenization_utils import PreTrainedTokenizer
- from ...tokenization_utils_base import (
- ENCODE_KWARGS_DOCSTRING,
- AddedToken,
- BatchEncoding,
- EncodedInput,
- PaddingStrategy,
- TensorType,
- TextInput,
- TextInputPair,
- TruncationStrategy,
- to_py_obj,
- )
- from ...utils import add_end_docstrings, is_tf_tensor, is_torch_tensor, logging
- logger = logging.get_logger(__name__)
- EntitySpan = Tuple[int, int]
- EntitySpanInput = List[EntitySpan]
- Entity = str
- EntityInput = List[Entity]
- VOCAB_FILES_NAMES = {
- "vocab_file": "vocab.json",
- "merges_file": "merges.txt",
- "entity_vocab_file": "entity_vocab.json",
- }
- ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
- return_token_type_ids (`bool`, *optional*):
- Whether to return token type IDs. If left to the default, will return the token type IDs according to
- the specific tokenizer's default, defined by the `return_outputs` attribute.
- [What are token type IDs?](../glossary#token-type-ids)
- return_attention_mask (`bool`, *optional*):
- Whether to return the attention mask. If left to the default, will return the attention mask according
- to the specific tokenizer's default, defined by the `return_outputs` attribute.
- [What are attention masks?](../glossary#attention-mask)
- return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
- of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
- of returning overflowing tokens.
- return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
- Whether or not to return special tokens mask information.
- return_offsets_mapping (`bool`, *optional*, defaults to `False`):
- Whether or not to return `(char_start, char_end)` for each token.
- This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
- Python's tokenizer, this method will raise `NotImplementedError`.
- return_length (`bool`, *optional*, defaults to `False`):
- Whether or not to return the lengths of the encoded inputs.
- verbose (`bool`, *optional*, defaults to `True`):
- Whether or not to print more information and warnings.
- **kwargs: passed to the `self.tokenize()` method
- Return:
- [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- - **input_ids** -- List of token ids to be fed to a model.
- [What are input IDs?](../glossary#input-ids)
- - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
- if *"token_type_ids"* is in `self.model_input_names`).
- [What are token type IDs?](../glossary#token-type-ids)
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
- [What are attention masks?](../glossary#attention-mask)
- - **entity_ids** -- List of entity ids to be fed to a model.
- [What are input IDs?](../glossary#input-ids)
- - **entity_position_ids** -- List of entity positions in the input sequence to be fed to a model.
- - **entity_token_type_ids** -- List of entity token type ids to be fed to a model (when
- `return_token_type_ids=True` or if *"entity_token_type_ids"* is in `self.model_input_names`).
- [What are token type IDs?](../glossary#token-type-ids)
- - **entity_attention_mask** -- List of indices specifying which entities should be attended to by the model
- (when `return_attention_mask=True` or if *"entity_attention_mask"* is in `self.model_input_names`).
- [What are attention masks?](../glossary#attention-mask)
- - **entity_start_positions** -- List of the start positions of entities in the word token sequence (when
- `task="entity_span_classification"`).
- - **entity_end_positions** -- List of the end positions of entities in the word token sequence (when
- `task="entity_span_classification"`).
- - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
- `return_overflowing_tokens=True`).
- - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
- `return_overflowing_tokens=True`).
- - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
- regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
- - **length** -- The length of the inputs (when `return_length=True`)
- """
- @lru_cache()
- # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
- characters the bpe code barfs on.
- The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
- if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
- decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
- tables between utf-8 bytes and unicode strings.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- # Copied from transformers.models.roberta.tokenization_roberta.get_pairs
- def get_pairs(word):
- """
- Return set of symbol pairs in a word.
- Word is represented as tuple of symbols (symbols being variable-length strings).
- """
- pairs = set()
- prev_char = word[0]
- for char in word[1:]:
- pairs.add((prev_char, char))
- prev_char = char
- return pairs
- class LukeTokenizer(PreTrainedTokenizer):
- """
- Constructs a LUKE tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
- This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
- be encoded differently whether it is at the beginning of the sentence (without space) or not:
- ```python
- >>> from transformers import LukeTokenizer
- >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base")
- >>> tokenizer("Hello world")["input_ids"]
- [0, 31414, 232, 2]
- >>> tokenizer(" Hello world")["input_ids"]
- [0, 20920, 232, 2]
- ```
- You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
- call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
- <Tip>
- When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
- </Tip>
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods. It also creates entity sequences, namely
- `entity_ids`, `entity_attention_mask`, `entity_token_type_ids`, and `entity_position_ids` to be used by the LUKE
- model.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- merges_file (`str`):
- Path to the merges file.
- entity_vocab_file (`str`):
- Path to the entity vocabulary file.
- task (`str`, *optional*):
- Task for which you want to prepare sequences. One of `"entity_classification"`,
- `"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity
- sequence is automatically created based on the given entity span(s).
- max_entity_length (`int`, *optional*, defaults to 32):
- The maximum length of `entity_ids`.
- max_mention_length (`int`, *optional*, defaults to 30):
- The maximum number of tokens inside an entity span.
- entity_token_1 (`str`, *optional*, defaults to `<ent>`):
- The special token used to represent an entity span in a word token sequence. This token is only used when
- `task` is set to `"entity_classification"` or `"entity_pair_classification"`.
- entity_token_2 (`str`, *optional*, defaults to `<ent2>`):
- The special token used to represent an entity span in a word token sequence. This token is only used when
- `task` is set to `"entity_pair_classification"`.
- errors (`str`, *optional*, defaults to `"replace"`):
- Paradigm to follow when decoding bytes to UTF-8. See
- [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
- bos_token (`str`, *optional*, defaults to `"<s>"`):
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the beginning of
- sequence. The token used is the `cls_token`.
- </Tip>
- eos_token (`str`, *optional*, defaults to `"</s>"`):
- The end of sequence token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the end of sequence.
- The token used is the `sep_token`.
- </Tip>
- sep_token (`str`, *optional*, defaults to `"</s>"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- cls_token (`str`, *optional*, defaults to `"<s>"`):
- The classifier token which is used when doing sequence classification (classification of the whole sequence
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- pad_token (`str`, *optional*, defaults to `"<pad>"`):
- The token used for padding, for example when batching sequences of different lengths.
- mask_token (`str`, *optional*, defaults to `"<mask>"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- add_prefix_space (`bool`, *optional*, defaults to `False`):
- Whether or not to add an initial space to the input. This allows to treat the leading word just as any
- other word. (LUKE tokenizer detect beginning of words by the preceding space).
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- def __init__(
- self,
- vocab_file,
- merges_file,
- entity_vocab_file,
- task=None,
- max_entity_length=32,
- max_mention_length=30,
- entity_token_1="<ent>",
- entity_token_2="<ent2>",
- entity_unk_token="[UNK]",
- entity_pad_token="[PAD]",
- entity_mask_token="[MASK]",
- entity_mask2_token="[MASK2]",
- errors="replace",
- bos_token="<s>",
- eos_token="</s>",
- sep_token="</s>",
- cls_token="<s>",
- unk_token="<unk>",
- pad_token="<pad>",
- mask_token="<mask>",
- add_prefix_space=False,
- **kwargs,
- ):
- bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
- eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
- sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
- cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
- unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
- pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
- # Mask token behave like a normal word, i.e. include the space before it
- mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
- with open(vocab_file, encoding="utf-8") as vocab_handle:
- self.encoder = json.load(vocab_handle)
- self.decoder = {v: k for k, v in self.encoder.items()}
- self.errors = errors # how to handle errors in decoding
- self.byte_encoder = bytes_to_unicode()
- self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
- with open(merges_file, encoding="utf-8") as merges_handle:
- bpe_merges = merges_handle.read().split("\n")[1:-1]
- bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
- self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
- self.cache = {}
- self.add_prefix_space = add_prefix_space
- # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
- self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
- # we add 2 special tokens for downstream tasks
- # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778
- entity_token_1 = (
- AddedToken(entity_token_1, lstrip=False, rstrip=False)
- if isinstance(entity_token_1, str)
- else entity_token_1
- )
- entity_token_2 = (
- AddedToken(entity_token_2, lstrip=False, rstrip=False)
- if isinstance(entity_token_2, str)
- else entity_token_2
- )
- kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", [])
- kwargs["additional_special_tokens"] += [entity_token_1, entity_token_2]
- with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle:
- self.entity_vocab = json.load(entity_vocab_handle)
- for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]:
- if entity_special_token not in self.entity_vocab:
- raise ValueError(
- f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. "
- f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}."
- )
- self.entity_unk_token_id = self.entity_vocab[entity_unk_token]
- self.entity_pad_token_id = self.entity_vocab[entity_pad_token]
- self.entity_mask_token_id = self.entity_vocab[entity_mask_token]
- self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token]
- self.task = task
- if task is None or task == "entity_span_classification":
- self.max_entity_length = max_entity_length
- elif task == "entity_classification":
- self.max_entity_length = 1
- elif task == "entity_pair_classification":
- self.max_entity_length = 2
- else:
- raise ValueError(
- f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification',"
- " 'entity_span_classification'] only."
- )
- self.max_mention_length = max_mention_length
- super().__init__(
- errors=errors,
- bos_token=bos_token,
- eos_token=eos_token,
- unk_token=unk_token,
- sep_token=sep_token,
- cls_token=cls_token,
- pad_token=pad_token,
- mask_token=mask_token,
- add_prefix_space=add_prefix_space,
- task=task,
- max_entity_length=32,
- max_mention_length=30,
- entity_token_1="<ent>",
- entity_token_2="<ent2>",
- entity_unk_token=entity_unk_token,
- entity_pad_token=entity_pad_token,
- entity_mask_token=entity_mask_token,
- entity_mask2_token=entity_mask2_token,
- **kwargs,
- )
- @property
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Luke, RoBERTa->LUKE
- def vocab_size(self):
- return len(self.encoder)
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab with Roberta->Luke, RoBERTa->LUKE
- def get_vocab(self):
- vocab = dict(self.encoder).copy()
- vocab.update(self.added_tokens_encoder)
- return vocab
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe with Roberta->Luke, RoBERTa->LUKE
- def bpe(self, token):
- if token in self.cache:
- return self.cache[token]
- word = tuple(token)
- pairs = get_pairs(word)
- if not pairs:
- return token
- while True:
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
- if bigram not in self.bpe_ranks:
- break
- first, second = bigram
- new_word = []
- i = 0
- while i < len(word):
- try:
- j = word.index(first, i)
- except ValueError:
- new_word.extend(word[i:])
- break
- else:
- new_word.extend(word[i:j])
- i = j
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
- new_word.append(first + second)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- new_word = tuple(new_word)
- word = new_word
- if len(word) == 1:
- break
- else:
- pairs = get_pairs(word)
- word = " ".join(word)
- self.cache[token] = word
- return word
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize with Roberta->Luke, RoBERTa->LUKE
- def _tokenize(self, text):
- """Tokenize a string."""
- bpe_tokens = []
- for token in re.findall(self.pat, text):
- token = "".join(
- self.byte_encoder[b] for b in token.encode("utf-8")
- ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
- bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
- return bpe_tokens
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id with Roberta->Luke, RoBERTa->LUKE
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.encoder.get(token, self.encoder.get(self.unk_token))
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token with Roberta->Luke, RoBERTa->LUKE
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.decoder.get(index)
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string with Roberta->Luke, RoBERTa->LUKE
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- text = "".join(tokens)
- text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
- return text
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.build_inputs_with_special_tokens with Roberta->Luke, RoBERTa->LUKE
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. A LUKE sequence has the following format:
- - single sequence: `<s> X </s>`
- - pair of sequences: `<s> A </s></s> B </s>`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
- cls = [self.cls_token_id]
- sep = [self.sep_token_id]
- return cls + token_ids_0 + sep + sep + token_ids_1 + sep
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask with Roberta->Luke, RoBERTa->LUKE
- def get_special_tokens_mask(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- if token_ids_1 is None:
- return [1] + ([0] * len(token_ids_0)) + [1]
- return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences with Roberta->Luke, RoBERTa->LUKE
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. LUKE does not
- make use of token type ids, therefore a list of zeros is returned.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of zeros.
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
- # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.prepare_for_tokenization with Roberta->Luke, RoBERTa->LUKE
- def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
- add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
- if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
- text = " " + text
- return (text, kwargs)
- @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
- def __call__(
- self,
- text: Union[TextInput, List[TextInput]],
- text_pair: Optional[Union[TextInput, List[TextInput]]] = None,
- entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
- entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
- entities: Optional[Union[EntityInput, List[EntityInput]]] = None,
- entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- max_entity_length: Optional[int] = None,
- stride: int = 0,
- is_split_into_words: Optional[bool] = False,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- """
- Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
- sequences, depending on the task you want to prepare them for.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
- tokenizer does not support tokenization based on pretokenized strings.
- text_pair (`str`, `List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
- tokenizer does not support tokenization based on pretokenized strings.
- entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
- The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
- with two integers denoting character-based start and end positions of entities. If you specify
- `"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor,
- the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each
- sequence must be equal to the length of each sequence of `entities`.
- entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
- The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
- with two integers denoting character-based start and end positions of entities. If you specify the
- `task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the
- length of each sequence must be equal to the length of each sequence of `entities_pair`.
- entities (`List[str]`, `List[List[str]]`, *optional*):
- The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
- representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
- Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
- each sequence must be equal to the length of each sequence of `entity_spans`. If you specify
- `entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences
- is automatically constructed by filling it with the [MASK] entity.
- entities_pair (`List[str]`, `List[List[str]]`, *optional*):
- The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
- representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
- Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
- each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify
- `entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity
- sequences is automatically constructed by filling it with the [MASK] entity.
- max_entity_length (`int`, *optional*):
- The maximum length of `entity_ids`.
- """
- # Input type checking for clearer error
- is_valid_single_text = isinstance(text, str)
- is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str)))
- if not (is_valid_single_text or is_valid_batch_text):
- raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).")
- is_valid_single_text_pair = isinstance(text_pair, str)
- is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and (
- len(text_pair) == 0 or isinstance(text_pair[0], str)
- )
- if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair):
- raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).")
- is_batched = bool(isinstance(text, (list, tuple)))
- if is_batched:
- batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
- if entities is None:
- batch_entities_or_entities_pairs = None
- else:
- batch_entities_or_entities_pairs = (
- list(zip(entities, entities_pair)) if entities_pair is not None else entities
- )
- if entity_spans is None:
- batch_entity_spans_or_entity_spans_pairs = None
- else:
- batch_entity_spans_or_entity_spans_pairs = (
- list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans
- )
- return self.batch_encode_plus(
- batch_text_or_text_pairs=batch_text_or_text_pairs,
- batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs,
- batch_entities_or_entities_pairs=batch_entities_or_entities_pairs,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- max_entity_length=max_entity_length,
- stride=stride,
- is_split_into_words=is_split_into_words,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- else:
- return self.encode_plus(
- text=text,
- text_pair=text_pair,
- entity_spans=entity_spans,
- entity_spans_pair=entity_spans_pair,
- entities=entities,
- entities_pair=entities_pair,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- max_entity_length=max_entity_length,
- stride=stride,
- is_split_into_words=is_split_into_words,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- **kwargs,
- )
- def _encode_plus(
- self,
- text: Union[TextInput],
- text_pair: Optional[Union[TextInput]] = None,
- entity_spans: Optional[EntitySpanInput] = None,
- entity_spans_pair: Optional[EntitySpanInput] = None,
- entities: Optional[EntityInput] = None,
- entities_pair: Optional[EntityInput] = None,
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- max_entity_length: Optional[int] = None,
- stride: int = 0,
- is_split_into_words: Optional[bool] = False,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- if return_offsets_mapping:
- raise NotImplementedError(
- "return_offset_mapping is not available when using Python tokenizers. "
- "To use this feature, change your tokenizer to one deriving from "
- "transformers.PreTrainedTokenizerFast. "
- "More information on available tokenizers at "
- "https://github.com/huggingface/transformers/pull/2674"
- )
- if is_split_into_words:
- raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
- (
- first_ids,
- second_ids,
- first_entity_ids,
- second_entity_ids,
- first_entity_token_spans,
- second_entity_token_spans,
- ) = self._create_input_sequence(
- text=text,
- text_pair=text_pair,
- entities=entities,
- entities_pair=entities_pair,
- entity_spans=entity_spans,
- entity_spans_pair=entity_spans_pair,
- **kwargs,
- )
- # prepare_for_model will create the attention_mask and token_type_ids
- return self.prepare_for_model(
- first_ids,
- pair_ids=second_ids,
- entity_ids=first_entity_ids,
- pair_entity_ids=second_entity_ids,
- entity_token_spans=first_entity_token_spans,
- pair_entity_token_spans=second_entity_token_spans,
- add_special_tokens=add_special_tokens,
- padding=padding_strategy.value,
- truncation=truncation_strategy.value,
- max_length=max_length,
- max_entity_length=max_entity_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_tensors=return_tensors,
- prepend_batch_axis=True,
- return_attention_mask=return_attention_mask,
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- verbose=verbose,
- )
- def _batch_encode_plus(
- self,
- batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]],
- batch_entity_spans_or_entity_spans_pairs: Optional[
- Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]]
- ] = None,
- batch_entities_or_entities_pairs: Optional[
- Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]]
- ] = None,
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- max_entity_length: Optional[int] = None,
- stride: int = 0,
- is_split_into_words: Optional[bool] = False,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- **kwargs,
- ) -> BatchEncoding:
- if return_offsets_mapping:
- raise NotImplementedError(
- "return_offset_mapping is not available when using Python tokenizers. "
- "To use this feature, change your tokenizer to one deriving from "
- "transformers.PreTrainedTokenizerFast."
- )
- if is_split_into_words:
- raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
- # input_ids is a list of tuples (one for each example in the batch)
- input_ids = []
- entity_ids = []
- entity_token_spans = []
- for index, text_or_text_pair in enumerate(batch_text_or_text_pairs):
- if not isinstance(text_or_text_pair, (list, tuple)):
- text, text_pair = text_or_text_pair, None
- else:
- text, text_pair = text_or_text_pair
- entities, entities_pair = None, None
- if batch_entities_or_entities_pairs is not None:
- entities_or_entities_pairs = batch_entities_or_entities_pairs[index]
- if entities_or_entities_pairs:
- if isinstance(entities_or_entities_pairs[0], str):
- entities, entities_pair = entities_or_entities_pairs, None
- else:
- entities, entities_pair = entities_or_entities_pairs
- entity_spans, entity_spans_pair = None, None
- if batch_entity_spans_or_entity_spans_pairs is not None:
- entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index]
- if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance(
- entity_spans_or_entity_spans_pairs[0], list
- ):
- entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs
- else:
- entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None
- (
- first_ids,
- second_ids,
- first_entity_ids,
- second_entity_ids,
- first_entity_token_spans,
- second_entity_token_spans,
- ) = self._create_input_sequence(
- text=text,
- text_pair=text_pair,
- entities=entities,
- entities_pair=entities_pair,
- entity_spans=entity_spans,
- entity_spans_pair=entity_spans_pair,
- **kwargs,
- )
- input_ids.append((first_ids, second_ids))
- entity_ids.append((first_entity_ids, second_entity_ids))
- entity_token_spans.append((first_entity_token_spans, second_entity_token_spans))
- batch_outputs = self._batch_prepare_for_model(
- input_ids,
- batch_entity_ids_pairs=entity_ids,
- batch_entity_token_spans_pairs=entity_token_spans,
- add_special_tokens=add_special_tokens,
- padding_strategy=padding_strategy,
- truncation_strategy=truncation_strategy,
- max_length=max_length,
- max_entity_length=max_entity_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- return_tensors=return_tensors,
- verbose=verbose,
- )
- return BatchEncoding(batch_outputs)
- def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
- if not isinstance(entity_spans, list):
- raise TypeError("entity_spans should be given as a list")
- elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
- raise ValueError(
- "entity_spans should be given as a list of tuples containing the start and end character indices"
- )
- if entities is not None:
- if not isinstance(entities, list):
- raise ValueError("If you specify entities, they should be given as a list")
- if len(entities) > 0 and not isinstance(entities[0], str):
- raise ValueError("If you specify entities, they should be given as a list of entity names")
- if len(entities) != len(entity_spans):
- raise ValueError("If you specify entities, entities and entity_spans must be the same length")
- def _create_input_sequence(
- self,
- text: Union[TextInput],
- text_pair: Optional[Union[TextInput]] = None,
- entities: Optional[EntityInput] = None,
- entities_pair: Optional[EntityInput] = None,
- entity_spans: Optional[EntitySpanInput] = None,
- entity_spans_pair: Optional[EntitySpanInput] = None,
- **kwargs,
- ) -> Tuple[list, list, list, list, list, list]:
- def get_input_ids(text):
- tokens = self.tokenize(text, **kwargs)
- return self.convert_tokens_to_ids(tokens)
- def get_input_ids_and_entity_token_spans(text, entity_spans):
- if entity_spans is None:
- return get_input_ids(text), None
- cur = 0
- input_ids = []
- entity_token_spans = [None] * len(entity_spans)
- split_char_positions = sorted(frozenset(itertools.chain(*entity_spans)))
- char_pos2token_pos = {}
- for split_char_position in split_char_positions:
- orig_split_char_position = split_char_position
- if (
- split_char_position > 0 and text[split_char_position - 1] == " "
- ): # whitespace should be prepended to the following token
- split_char_position -= 1
- if cur != split_char_position:
- input_ids += get_input_ids(text[cur:split_char_position])
- cur = split_char_position
- char_pos2token_pos[orig_split_char_position] = len(input_ids)
- input_ids += get_input_ids(text[cur:])
- entity_token_spans = [
- (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans
- ]
- return input_ids, entity_token_spans
- first_ids, second_ids = None, None
- first_entity_ids, second_entity_ids = None, None
- first_entity_token_spans, second_entity_token_spans = None, None
- if self.task is None:
- if entity_spans is None:
- first_ids = get_input_ids(text)
- else:
- self._check_entity_input_format(entities, entity_spans)
- first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
- if entities is None:
- first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
- else:
- first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities]
- if text_pair is not None:
- if entity_spans_pair is None:
- second_ids = get_input_ids(text_pair)
- else:
- self._check_entity_input_format(entities_pair, entity_spans_pair)
- second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans(
- text_pair, entity_spans_pair
- )
- if entities_pair is None:
- second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair)
- else:
- second_entity_ids = [
- self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair
- ]
- elif self.task == "entity_classification":
- if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)):
- raise ValueError(
- "Entity spans should be a list containing a single tuple "
- "containing the start and end character indices of an entity"
- )
- first_entity_ids = [self.entity_mask_token_id]
- first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
- # add special tokens to input ids
- entity_token_start, entity_token_end = first_entity_token_spans[0]
- first_ids = (
- first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:]
- )
- first_ids = (
- first_ids[:entity_token_start]
- + [self.additional_special_tokens_ids[0]]
- + first_ids[entity_token_start:]
- )
- first_entity_token_spans = [(entity_token_start, entity_token_end + 2)]
- elif self.task == "entity_pair_classification":
- if not (
- isinstance(entity_spans, list)
- and len(entity_spans) == 2
- and isinstance(entity_spans[0], tuple)
- and isinstance(entity_spans[1], tuple)
- ):
- raise ValueError(
- "Entity spans should be provided as a list of two tuples, "
- "each tuple containing the start and end character indices of an entity"
- )
- head_span, tail_span = entity_spans
- first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id]
- first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
- head_token_span, tail_token_span = first_entity_token_spans
- token_span_with_special_token_ids = [
- (head_token_span, self.additional_special_tokens_ids[0]),
- (tail_token_span, self.additional_special_tokens_ids[1]),
- ]
- if head_token_span[0] < tail_token_span[0]:
- first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
- first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
- token_span_with_special_token_ids = reversed(token_span_with_special_token_ids)
- else:
- first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
- first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
- for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids:
- first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:]
- first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:]
- elif self.task == "entity_span_classification":
- if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)):
- raise ValueError(
- "Entity spans should be provided as a list of tuples, "
- "each tuple containing the start and end character indices of an entity"
- )
- first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
- first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
- else:
- raise ValueError(f"Task {self.task} not supported")
- return (
- first_ids,
- second_ids,
- first_entity_ids,
- second_entity_ids,
- first_entity_token_spans,
- second_entity_token_spans,
- )
- @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
- def _batch_prepare_for_model(
- self,
- batch_ids_pairs: List[Tuple[List[int], None]],
- batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]],
- batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]],
- add_special_tokens: bool = True,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
- max_length: Optional[int] = None,
- max_entity_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[str] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- ) -> BatchEncoding:
- """
- Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
- adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
- manages a moving window (with user defined stride) for overflowing tokens
- Args:
- batch_ids_pairs: list of tokenized input ids or input ids pairs
- batch_entity_ids_pairs: list of entity ids or entity ids pairs
- batch_entity_token_spans_pairs: list of entity spans or entity spans pairs
- max_entity_length: The maximum length of the entity sequence.
- """
- batch_outputs = {}
- for input_ids, entity_ids, entity_token_span_pairs in zip(
- batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs
- ):
- first_ids, second_ids = input_ids
- first_entity_ids, second_entity_ids = entity_ids
- first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs
- outputs = self.prepare_for_model(
- first_ids,
- second_ids,
- entity_ids=first_entity_ids,
- pair_entity_ids=second_entity_ids,
- entity_token_spans=first_entity_token_spans,
- pair_entity_token_spans=second_entity_token_spans,
- add_special_tokens=add_special_tokens,
- padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
- truncation=truncation_strategy.value,
- max_length=max_length,
- max_entity_length=max_entity_length,
- stride=stride,
- pad_to_multiple_of=None, # we pad in batch afterward
- padding_side=None, # we pad in batch afterward
- return_attention_mask=False, # we pad in batch afterward
- return_token_type_ids=return_token_type_ids,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_length=return_length,
- return_tensors=None, # We convert the whole batch to tensors at the end
- prepend_batch_axis=False,
- verbose=verbose,
- )
- for key, value in outputs.items():
- if key not in batch_outputs:
- batch_outputs[key] = []
- batch_outputs[key].append(value)
- batch_outputs = self.pad(
- batch_outputs,
- padding=padding_strategy.value,
- max_length=max_length,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- )
- batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
- return batch_outputs
- @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
- def prepare_for_model(
- self,
- ids: List[int],
- pair_ids: Optional[List[int]] = None,
- entity_ids: Optional[List[int]] = None,
- pair_entity_ids: Optional[List[int]] = None,
- entity_token_spans: Optional[List[Tuple[int, int]]] = None,
- pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- max_entity_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- prepend_batch_axis: bool = False,
- **kwargs,
- ) -> BatchEncoding:
- """
- Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids,
- entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing
- while taking into account the special tokens and manages a moving window (with user defined stride) for
- overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first*
- or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an
- error.
- Args:
- ids (`List[int]`):
- Tokenized input ids of the first sequence.
- pair_ids (`List[int]`, *optional*):
- Tokenized input ids of the second sequence.
- entity_ids (`List[int]`, *optional*):
- Entity ids of the first sequence.
- pair_entity_ids (`List[int]`, *optional*):
- Entity ids of the second sequence.
- entity_token_spans (`List[Tuple[int, int]]`, *optional*):
- Entity spans of the first sequence.
- pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*):
- Entity spans of the second sequence.
- max_entity_length (`int`, *optional*):
- The maximum length of the entity sequence.
- """
- # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
- padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- pad_to_multiple_of=pad_to_multiple_of,
- verbose=verbose,
- **kwargs,
- )
- # Compute lengths
- pair = bool(pair_ids is not None)
- len_ids = len(ids)
- len_pair_ids = len(pair_ids) if pair else 0
- if return_token_type_ids and not add_special_tokens:
- raise ValueError(
- "Asking to return token_type_ids while setting add_special_tokens to False "
- "results in an undefined behavior. Please set add_special_tokens to True or "
- "set return_token_type_ids to None."
- )
- if (
- return_overflowing_tokens
- and truncation_strategy == TruncationStrategy.LONGEST_FIRST
- and pair_ids is not None
- ):
- raise ValueError(
- "Not possible to return overflowing tokens for pair of sequences with the "
- "`longest_first`. Please select another truncation strategy than `longest_first`, "
- "for instance `only_second` or `only_first`."
- )
- # Load from model defaults
- if return_token_type_ids is None:
- return_token_type_ids = "token_type_ids" in self.model_input_names
- if return_attention_mask is None:
- return_attention_mask = "attention_mask" in self.model_input_names
- encoded_inputs = {}
- # Compute the total size of the returned word encodings
- total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
- # Truncation: Handle max sequence length and max_entity_length
- overflowing_tokens = []
- if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
- # truncate words up to max_length
- ids, pair_ids, overflowing_tokens = self.truncate_sequences(
- ids,
- pair_ids=pair_ids,
- num_tokens_to_remove=total_len - max_length,
- truncation_strategy=truncation_strategy,
- stride=stride,
- )
- if return_overflowing_tokens:
- encoded_inputs["overflowing_tokens"] = overflowing_tokens
- encoded_inputs["num_truncated_tokens"] = total_len - max_length
- # Add special tokens
- if add_special_tokens:
- sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
- token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
- entity_token_offset = 1 # 1 * <s> token
- pair_entity_token_offset = len(ids) + 3 # 1 * <s> token & 2 * <sep> tokens
- else:
- sequence = ids + pair_ids if pair else ids
- token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
- entity_token_offset = 0
- pair_entity_token_offset = len(ids)
- # Build output dictionary
- encoded_inputs["input_ids"] = sequence
- if return_token_type_ids:
- encoded_inputs["token_type_ids"] = token_type_ids
- if return_special_tokens_mask:
- if add_special_tokens:
- encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
- else:
- encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
- # Set max entity length
- if not max_entity_length:
- max_entity_length = self.max_entity_length
- if entity_ids is not None:
- total_entity_len = 0
- num_invalid_entities = 0
- valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)]
- valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)]
- total_entity_len += len(valid_entity_ids)
- num_invalid_entities += len(entity_ids) - len(valid_entity_ids)
- valid_pair_entity_ids, valid_pair_entity_token_spans = None, None
- if pair_entity_ids is not None:
- valid_pair_entity_ids = [
- ent_id
- for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans)
- if span[1] <= len(pair_ids)
- ]
- valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)]
- total_entity_len += len(valid_pair_entity_ids)
- num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids)
- if num_invalid_entities != 0:
- logger.warning(
- f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the"
- " truncation of input tokens"
- )
- if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length:
- # truncate entities up to max_entity_length
- valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences(
- valid_entity_ids,
- pair_ids=valid_pair_entity_ids,
- num_tokens_to_remove=total_entity_len - max_entity_length,
- truncation_strategy=truncation_strategy,
- stride=stride,
- )
- valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)]
- if valid_pair_entity_token_spans is not None:
- valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)]
- if return_overflowing_tokens:
- encoded_inputs["overflowing_entities"] = overflowing_entities
- encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length
- final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids
- encoded_inputs["entity_ids"] = list(final_entity_ids)
- entity_position_ids = []
- entity_start_positions = []
- entity_end_positions = []
- for token_spans, offset in (
- (valid_entity_token_spans, entity_token_offset),
- (valid_pair_entity_token_spans, pair_entity_token_offset),
- ):
- if token_spans is not None:
- for start, end in token_spans:
- start += offset
- end += offset
- position_ids = list(range(start, end))[: self.max_mention_length]
- position_ids += [-1] * (self.max_mention_length - end + start)
- entity_position_ids.append(position_ids)
- entity_start_positions.append(start)
- entity_end_positions.append(end - 1)
- encoded_inputs["entity_position_ids"] = entity_position_ids
- if self.task == "entity_span_classification":
- encoded_inputs["entity_start_positions"] = entity_start_positions
- encoded_inputs["entity_end_positions"] = entity_end_positions
- if return_token_type_ids:
- encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"])
- # Check lengths
- self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
- # Padding
- if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
- encoded_inputs = self.pad(
- encoded_inputs,
- max_length=max_length,
- max_entity_length=max_entity_length,
- padding=padding_strategy.value,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- )
- if return_length:
- encoded_inputs["length"] = len(encoded_inputs["input_ids"])
- batch_outputs = BatchEncoding(
- encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
- )
- return batch_outputs
- def pad(
- self,
- encoded_inputs: Union[
- BatchEncoding,
- List[BatchEncoding],
- Dict[str, EncodedInput],
- Dict[str, List[EncodedInput]],
- List[Dict[str, EncodedInput]],
- ],
- padding: Union[bool, str, PaddingStrategy] = True,
- max_length: Optional[int] = None,
- max_entity_length: Optional[int] = None,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- verbose: bool = True,
- ) -> BatchEncoding:
- """
- Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
- in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with
- `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed
- are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless
- you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the
- specific device of your tensors however.
- Args:
- encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
- Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
- tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
- List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
- collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or
- TensorFlow tensors), see the note above for the return type.
- padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
- Select a strategy to pad the returned sequences (according to the model's padding side and padding
- index) among:
- - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
- sequence if provided).
- - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
- acceptable input length for the model if that argument is not provided.
- - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
- lengths).
- max_length (`int`, *optional*):
- Maximum length of the returned list and optionally padding length (see above).
- max_entity_length (`int`, *optional*):
- The maximum length of the entity sequence.
- pad_to_multiple_of (`int`, *optional*):
- If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
- the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
- padding_side:
- The side on which the model should have padding applied. Should be selected between ['right', 'left'].
- Default value is picked from the class attribute of the same name.
- return_attention_mask (`bool`, *optional*):
- Whether to return the attention mask. If left to the default, will return the attention mask according
- to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention
- masks?](../glossary#attention-mask)
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
- If set, will return tensors instead of list of python integers. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return Numpy `np.ndarray` objects.
- verbose (`bool`, *optional*, defaults to `True`):
- Whether or not to print more information and warnings.
- """
- # If we have a list of dicts, let's convert it in a dict of lists
- # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
- if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
- encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
- # The model's main input name, usually `input_ids`, has be passed for padding
- if self.model_input_names[0] not in encoded_inputs:
- raise ValueError(
- "You should supply an encoding or a list of encodings to this method "
- f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
- )
- required_input = encoded_inputs[self.model_input_names[0]]
- if not required_input:
- if return_attention_mask:
- encoded_inputs["attention_mask"] = []
- return encoded_inputs
- # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
- # and rebuild them afterwards if no return_tensors is specified
- # Note that we lose the specific device the tensor may be on for PyTorch
- first_element = required_input[0]
- if isinstance(first_element, (list, tuple)):
- # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
- index = 0
- while len(required_input[index]) == 0:
- index += 1
- if index < len(required_input):
- first_element = required_input[index][0]
- # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
- if not isinstance(first_element, (int, list, tuple)):
- if is_tf_tensor(first_element):
- return_tensors = "tf" if return_tensors is None else return_tensors
- elif is_torch_tensor(first_element):
- return_tensors = "pt" if return_tensors is None else return_tensors
- elif isinstance(first_element, np.ndarray):
- return_tensors = "np" if return_tensors is None else return_tensors
- else:
- raise ValueError(
- f"type of {first_element} unknown: {type(first_element)}. "
- "Should be one of a python, numpy, pytorch or tensorflow object."
- )
- for key, value in encoded_inputs.items():
- encoded_inputs[key] = to_py_obj(value)
- # Convert padding_strategy in PaddingStrategy
- padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
- padding=padding, max_length=max_length, verbose=verbose
- )
- if max_entity_length is None:
- max_entity_length = self.max_entity_length
- required_input = encoded_inputs[self.model_input_names[0]]
- if required_input and not isinstance(required_input[0], (list, tuple)):
- encoded_inputs = self._pad(
- encoded_inputs,
- max_length=max_length,
- max_entity_length=max_entity_length,
- padding_strategy=padding_strategy,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- )
- return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
- batch_size = len(required_input)
- if any(len(v) != batch_size for v in encoded_inputs.values()):
- raise ValueError("Some items in the output dictionary have a different batch size than others.")
- if padding_strategy == PaddingStrategy.LONGEST:
- max_length = max(len(inputs) for inputs in required_input)
- max_entity_length = (
- max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0
- )
- padding_strategy = PaddingStrategy.MAX_LENGTH
- batch_outputs = {}
- for i in range(batch_size):
- inputs = {k: v[i] for k, v in encoded_inputs.items()}
- outputs = self._pad(
- inputs,
- max_length=max_length,
- max_entity_length=max_entity_length,
- padding_strategy=padding_strategy,
- pad_to_multiple_of=pad_to_multiple_of,
- padding_side=padding_side,
- return_attention_mask=return_attention_mask,
- )
- for key, value in outputs.items():
- if key not in batch_outputs:
- batch_outputs[key] = []
- batch_outputs[key].append(value)
- return BatchEncoding(batch_outputs, tensor_type=return_tensors)
- def _pad(
- self,
- encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
- max_length: Optional[int] = None,
- max_entity_length: Optional[int] = None,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- pad_to_multiple_of: Optional[int] = None,
- padding_side: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- ) -> dict:
- """
- Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
- Args:
- encoded_inputs:
- Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
- max_length: maximum length of the returned list and optionally padding length (see below).
- Will truncate by taking into account the special tokens.
- max_entity_length: The maximum length of the entity sequence.
- padding_strategy: PaddingStrategy to use for padding.
- - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- - PaddingStrategy.DO_NOT_PAD: Do not pad
- The tokenizer padding sides are defined in self.padding_side:
- - 'left': pads on the left of the sequences
- - 'right': pads on the right of the sequences
- pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
- This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
- `>= 7.5` (Volta).
- padding_side:
- The side on which the model should have padding applied. Should be selected between ['right', 'left'].
- Default value is picked from the class attribute of the same name.
- return_attention_mask:
- (optional) Set to False to avoid returning attention mask (default: set to model specifics)
- """
- entities_provided = bool("entity_ids" in encoded_inputs)
- # Load from model defaults
- if return_attention_mask is None:
- return_attention_mask = "attention_mask" in self.model_input_names
- if padding_strategy == PaddingStrategy.LONGEST:
- max_length = len(encoded_inputs["input_ids"])
- if entities_provided:
- max_entity_length = len(encoded_inputs["entity_ids"])
- if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
- max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
- if (
- entities_provided
- and max_entity_length is not None
- and pad_to_multiple_of is not None
- and (max_entity_length % pad_to_multiple_of != 0)
- ):
- max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
- needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and (
- len(encoded_inputs["input_ids"]) != max_length
- or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length)
- )
- # Initialize attention mask if not present.
- if return_attention_mask and "attention_mask" not in encoded_inputs:
- encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"])
- if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs:
- encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"])
- if needs_to_be_padded:
- difference = max_length - len(encoded_inputs["input_ids"])
- padding_side = padding_side if padding_side is not None else self.padding_side
- if entities_provided:
- entity_difference = max_entity_length - len(encoded_inputs["entity_ids"])
- if padding_side == "right":
- if return_attention_mask:
- encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
- if entities_provided:
- encoded_inputs["entity_attention_mask"] = (
- encoded_inputs["entity_attention_mask"] + [0] * entity_difference
- )
- if "token_type_ids" in encoded_inputs:
- encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference
- if entities_provided:
- encoded_inputs["entity_token_type_ids"] = (
- encoded_inputs["entity_token_type_ids"] + [0] * entity_difference
- )
- if "special_tokens_mask" in encoded_inputs:
- encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
- encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference
- if entities_provided:
- encoded_inputs["entity_ids"] = (
- encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference
- )
- encoded_inputs["entity_position_ids"] = (
- encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference
- )
- if self.task == "entity_span_classification":
- encoded_inputs["entity_start_positions"] = (
- encoded_inputs["entity_start_positions"] + [0] * entity_difference
- )
- encoded_inputs["entity_end_positions"] = (
- encoded_inputs["entity_end_positions"] + [0] * entity_difference
- )
- elif padding_side == "left":
- if return_attention_mask:
- encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
- if entities_provided:
- encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[
- "entity_attention_mask"
- ]
- if "token_type_ids" in encoded_inputs:
- encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"]
- if entities_provided:
- encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[
- "entity_token_type_ids"
- ]
- if "special_tokens_mask" in encoded_inputs:
- encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
- encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"]
- if entities_provided:
- encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[
- "entity_ids"
- ]
- encoded_inputs["entity_position_ids"] = [
- [-1] * self.max_mention_length
- ] * entity_difference + encoded_inputs["entity_position_ids"]
- if self.task == "entity_span_classification":
- encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[
- "entity_start_positions"
- ]
- encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[
- "entity_end_positions"
- ]
- else:
- raise ValueError("Invalid padding strategy:" + str(padding_side))
- return encoded_inputs
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- merge_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
- )
- with open(vocab_file, "w", encoding="utf-8") as f:
- f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
- index = 0
- with open(merge_file, "w", encoding="utf-8") as writer:
- writer.write("#version: 0.2\n")
- for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
- if index != token_index:
- logger.warning(
- f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
- " Please check that the tokenizer is not corrupted!"
- )
- index = token_index
- writer.write(" ".join(bpe_tokens) + "\n")
- index += 1
- entity_vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"]
- )
- with open(entity_vocab_file, "w", encoding="utf-8") as f:
- f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
- return vocab_file, merge_file, entity_vocab_file
|