| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083 |
- # coding=utf-8
- # Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch MAMBA2 model."""
- import math
- from dataclasses import dataclass
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import CrossEntropyLoss
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- ModelOutput,
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- )
- from ...utils.import_utils import is_causal_conv1d_available, is_mamba_2_ssm_available
- from .configuration_mamba2 import Mamba2Config
- logger = logging.get_logger(__name__)
- if is_mamba_2_ssm_available():
- from mamba_ssm.ops.triton.selective_state_update import selective_state_update
- from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
- else:
- selective_state_update = None
- if is_causal_conv1d_available():
- from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
- else:
- causal_conv1d_update, causal_conv1d_fn = None, None
- is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
- _CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1"
- _CONFIG_FOR_DOC = "Mamba2Config"
- # Helper methods for segment sum computation
- def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
- """
- Padding x tensor with `pad_size` on the seq_len dim (dim=1)
- Assumes that we only have tensors of either size 4 or 3
- """
- pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
- return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
- def reshape_into_chunks(input_tensor, pad_size, chunk_size):
- """
- Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
- simultaneously splitting it into chunk sequences.
- Assumes that we only have tensors of either size 4 or 3
- """
- # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
- input_tensor = pad_tensor_by_size(input_tensor, pad_size)
- if len(input_tensor.shape) == 3:
- # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
- return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
- else:
- # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
- return input_tensor.reshape(
- input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
- )
- def segment_sum(input_tensor):
- """
- More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
- """
- chunk_size = input_tensor.size(-1)
- # 1. expand input tensor to have an additional dimension and repeat along that dimension
- # [..., chunk_size] -> [..., chunk_size, chunk_size]
- input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
- # 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
- mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
- input_tensor = input_tensor.masked_fill(~mask, 0)
- # 3. compute actual cumsum
- tensor_segsum = torch.cumsum(input_tensor, dim=-2)
- # 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
- mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
- tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
- return tensor_segsum
- class Mamba2Cache:
- """
- Arguments:
- config: Mamba2Config
- batch_size: int
- dtype: torch.dtype
- device: torch.device
- Attributes:
- seqlen_offset: int
- dtype: torch.dtype
- conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
- ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
- """
- def __init__(
- self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
- ):
- self.seqlen_offset = 0
- self.dtype = dtype
- self.conv_kernel_size = config.conv_kernel
- self.intermediate_size = int(config.expand * config.hidden_size)
- self.conv_states = {
- i: torch.zeros(
- batch_size,
- self.intermediate_size + 2 * config.n_groups * config.state_size,
- self.conv_kernel_size,
- device=device,
- dtype=dtype,
- )
- for i in range(config.num_hidden_layers)
- }
- self.ssm_states = {
- i: torch.zeros(
- batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype
- )
- for i in range(config.num_hidden_layers)
- }
- self.activation = config.hidden_act
- self.act = ACT2FN[config.hidden_act]
- def update_conv_state(
- self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
- ) -> torch.Tensor:
- conv_state = self.conv_states[layer_idx]
- cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
- conv_state = conv_state.roll(shifts=-1, dims=-1)
- conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
- self.conv_states[layer_idx].zero_()
- self.conv_states[layer_idx] += conv_state
- return self.conv_states[layer_idx]
- def reset(self):
- self.conv_states.zero_()
- self.ssm_states.zero_()
- class MambaRMSNormGated(torch.nn.Module):
- def __init__(self, hidden_size, eps=1e-6):
- super().__init__()
- self.weight = nn.Parameter(torch.ones(hidden_size))
- self.variance_epsilon = eps
- def forward(self, hidden_states, gate=None):
- input_dtype = hidden_states.dtype
- hidden_states = hidden_states.to(torch.float32)
- if gate is not None:
- hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
- return self.weight * hidden_states.to(input_dtype)
- class Mamba2Mixer(nn.Module):
- """
- Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
- A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
- ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
- and is why Mamba is called **selective** state spaces)
- """
- def __init__(self, config: Mamba2Config, layer_idx: int):
- super().__init__()
- self.num_heads = config.num_heads
- self.hidden_size = config.hidden_size
- self.ssm_state_size = config.state_size
- self.conv_kernel_size = config.conv_kernel
- self.intermediate_size = int(config.expand * self.hidden_size)
- self.time_step_rank = int(config.time_step_rank)
- self.layer_idx = layer_idx
- self.use_conv_bias = config.use_conv_bias
- self.activation = config.hidden_act
- self.act = ACT2FN[config.hidden_act]
- self.layer_norm_epsilon = config.layer_norm_epsilon
- self.rms_norm = config.rms_norm
- self.n_groups = config.n_groups
- self.head_dim = config.head_dim
- self.chunk_size = config.chunk_size
- self.time_step_limit = config.time_step_limit
- self.time_step_min = config.time_step_min
- self.time_step_max = config.time_step_max
- self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
- self.conv1d = nn.Conv1d(
- in_channels=self.conv_dim,
- out_channels=self.conv_dim,
- bias=config.use_conv_bias,
- kernel_size=config.conv_kernel,
- groups=self.conv_dim,
- padding=config.conv_kernel - 1,
- )
- # projection of the input hidden states
- projection_size = self.intermediate_size + self.conv_dim + self.num_heads
- self.in_proj = nn.Linear(
- self.hidden_size,
- projection_size,
- bias=config.use_bias,
- )
- # selective projection used to make dt, B and C input dependant
- # time step projection (discretization)
- # instantiate once and copy inv_dt in init_weights of PretrainedModel
- self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
- # S4D real initialization. These are not discretized!
- # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
- A = torch.arange(1, self.num_heads + 1)
- self.A_log = nn.Parameter(torch.log(A))
- self.A_log._no_weight_decay = True
- self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
- self.D = nn.Parameter(torch.ones(self.num_heads))
- self.D._no_weight_decay = True
- self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
- self.use_bias = config.use_bias
- if not is_fast_path_available:
- logger.warning_once(
- "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
- " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
- " https://github.com/Dao-AILab/causal-conv1d"
- )
- def cuda_kernels_forward(
- self,
- hidden_states: torch.Tensor,
- cache_params: Optional[Mamba2Cache] = None,
- cache_position: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- ):
- # set up dimensions for reshapes later
- batch_size, seq_len, _ = hidden_states.shape
- groups_time_state_size = self.n_groups * self.ssm_state_size
- d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads
- # getting projected states from cache if it exists
- if cache_params is not None and cache_params.seqlen_offset > 0:
- in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
- d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2
- split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads]
- _, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1)
- hidden_states_B_C = causal_conv1d_update(
- hidden_states_B_C,
- cache_params.conv_states[self.layer_idx],
- self.conv1d.weight.squeeze(1),
- self.conv1d.bias,
- self.activation,
- )
- hidden_states, B, C = torch.split(
- hidden_states_B_C,
- [self.intermediate_size, groups_time_state_size, groups_time_state_size],
- dim=-1,
- )
- A = -torch.exp(self.A_log.float()) # (nheads,)
- A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
- dt = dt[:, :, None].expand(-1, -1, self.head_dim)
- dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
- D = self.D[:, None, ...].expand(-1, self.head_dim)
- B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
- C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
- hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
- hidden_states = selective_state_update(
- cache_params.ssm_states[self.layer_idx],
- hidden_states_reshaped,
- dt,
- A,
- B,
- C,
- D,
- z=None,
- dt_bias=dt_bias,
- dt_softplus=True,
- )
- hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
- hidden_states = self.norm(hidden_states, gate)
- out = self.out_proj(hidden_states)[:, None, ...]
- # if no cache is found, calling the kernel
- else:
- if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
- # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
- dtype = hidden_states.dtype
- hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
- # 1. Gated MLP's linear projection
- projected_states = self.in_proj(hidden_states)
- A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
- dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
- if self.training and cache_params is None:
- out, ssm_state = mamba_split_conv1d_scan_combined(
- projected_states,
- self.conv1d.weight.squeeze(1),
- self.conv1d.bias,
- self.dt_bias,
- A,
- D=self.D,
- chunk_size=self.chunk_size,
- seq_idx=None, # was seq_idx
- activation=self.activation,
- rmsnorm_weight=self.norm.weight,
- rmsnorm_eps=self.norm.variance_epsilon,
- outproj_weight=self.out_proj.weight,
- outproj_bias=self.out_proj.bias,
- headdim=self.head_dim,
- ngroups=self.n_groups,
- norm_before_gate=False,
- return_final_states=True,
- **dt_limit_kwargs,
- )
- else:
- gate, hidden_states_B_C, time_step = torch.split(
- projected_states,
- [self.intermediate_size, self.conv_dim, self.num_heads],
- dim=-1,
- )
- # 1D Convolution
- if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
- hidden_states_B_C = self.act(
- self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len]
- ) # (B, L, self.d_inner + 2 * ngroups * d_state)
- else:
- hidden_states_B_C = causal_conv1d_fn(
- x=hidden_states_B_C.transpose(1, 2),
- weight=self.conv1d.weight.squeeze(1),
- bias=self.conv1d.bias,
- activation=self.activation,
- ).transpose(1, 2)[:, :seq_len]
- hidden_states, B, C = torch.split(
- hidden_states_B_C,
- [self.intermediate_size, groups_time_state_size, groups_time_state_size],
- dim=-1,
- )
- if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
- # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
- dtype = hidden_states.dtype
- hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
- scan_output, ssm_state = mamba_chunk_scan_combined(
- hidden_states.view(batch_size, seq_len, -1, self.head_dim),
- time_step,
- A,
- B.view(batch_size, seq_len, self.n_groups, -1),
- C.view(batch_size, seq_len, self.n_groups, -1),
- chunk_size=self.chunk_size,
- D=self.D,
- z=None,
- seq_idx=None,
- return_final_states=True,
- dt_bias=self.dt_bias,
- dt_softplus=True,
- **dt_limit_kwargs,
- )
- if ssm_state is not None and cache_params is not None:
- cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
- scan_output = scan_output.view(batch_size, seq_len, -1)
- # Multiply "gate" branch and apply extra normalization layer
- scan_output = self.norm(scan_output, gate)
- out = self.out_proj(scan_output)
- return out
- # fmt: off
- def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
- batch_size, seq_len, _ = input_states.shape
- dtype = input_states.dtype
- # Gated MLP's linear projection
- projected_states = self.in_proj(input_states.squeeze(1))
- d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
- _, _, gate, hidden_states, dt = projected_states.split(
- [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
- )
- # Convolution sequence transformation
- if cache_params is not None:
- ssm_state = cache_params.ssm_states[self.layer_idx].clone()
- ssm_state = ssm_state.to(hidden_states.device)
- if cache_params.seqlen_offset > 0:
- conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
- conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
- # handle batched generation - states are copied through
- conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
- cache_params.conv_states[self.layer_idx].copy_(conv_state)
- hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1)
- if self.use_conv_bias:
- hidden_states += self.conv1d.bias
- hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding
- else:
- hidden_states = hidden_states.transpose(1,2)
- conv_state = nn.functional.pad(
- hidden_states,
- (self.conv_kernel_size - hidden_states.shape[-1], 0)
- )
- cache_params.conv_states[self.layer_idx].copy_(conv_state)
- hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
- if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
- dtype = hidden_states.dtype
- # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
- hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
- else:
- ssm_state = torch.zeros(
- (batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
- device=hidden_states.device, dtype=dtype
- )
- hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
- hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
- A = -torch.exp(self.A_log.float()) # [num_heads]
- if cache_params is not None and cache_params.seqlen_offset > 0:
- # Note: there is no need to pad parameter matrices here, as there is just one new token
- # for batched generation
- dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
- dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
- # [num_heads] -> [num_heads, head_dim]
- dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
- dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
- dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
- A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
- # [bsz, num_heads, head_dim, state_size]
- dA = torch.exp(dt[..., None] * A)
- # Discretize B
- # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
- # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
- B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
- B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
- B = B.reshape(batch_size, -1, B.shape[-1])
- # [bsz, num_heads, head_dim, state_size]
- dB = dt[..., None] * B[..., None, :]
- # Discretize x into dB
- # [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
- hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
- dBx = dB * hidden_states[..., None]
- # State calculation
- cache_params.ssm_states[self.layer_idx].copy_(
- cache_params.ssm_states[self.layer_idx] * dA + dBx
- )
- # Subsequent output
- # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
- C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
- C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
- C = C.reshape(batch_size, -1, C.shape[-1])
- # [bsz, num_heads, head_dim]
- ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
- # Reshape ssm_states to merge the first two dimensions
- ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
- C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
- y = torch.bmm(ssm_states_reshaped, C_reshaped)
- y = y.view(batch_size, self.num_heads, self.head_dim)
- # D skip connection
- # [num_heads] -> [num_heads, head_dim]
- D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
- y = (y + hidden_states * D).to(y.dtype)
- # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
- y = y.reshape(batch_size, -1)[:, None, ...]
- else:
- # begin ssd naive implementation without einsums
- dt = nn.functional.softplus(dt + self.dt_bias)
- dt = torch.clamp(dt, self.time_step_min)
- hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
- B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
- C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
- B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
- C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
- pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
- D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
- # Discretize x and A
- hidden_states = hidden_states * dt[..., None]
- A = A.to(hidden_states.dtype) * dt
- # Rearrange into blocks/chunks
- hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
- # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
- A = A.permute(0, 3, 1, 2)
- A_cumsum = torch.cumsum(A, dim=-1)
- # 1. Compute the output for each intra-chunk (diagonal blocks)
- # This is the analog of a causal mask
- L = torch.exp(segment_sum(A))
- # First, contraction of C and B to get G (attention-weights like)
- G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
- G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
- # Step 2: Compute M, equivalent to applying attention mask to weights
- M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
- M = M_intermediate.sum(dim=-1)
- # Step 3: Compute Y_diag (apply to values)
- Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
- # (right term of low-rank factorization of off-diagonal blocks; B terms)
- decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
- B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
- # permute back B * decay states
- states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
- if cache_params is not None and cache_params.seqlen_offset > 0:
- previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...]
- else:
- previous_states = torch.zeros_like(states[:, :1])
- states = torch.cat([previous_states, states], dim=1)
- decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
- states_permuted = states.permute(0, 2, 1, 3, 4)
- result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
- new_states = result.permute(0, 2, 1, 3, 4)
- states, ssm_state = new_states[:, :-1], new_states[:, -1]
- # Compute state -> output conversion per chunk
- # (left term of low-rank factorization of off-diagonal blocks; C terms)
- state_decay_out = torch.exp(A_cumsum)
- # compute Yoff
- C_times_states = (C[..., None, :] * states[:, :, None, ...])
- state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
- Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
- # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
- y = Y_diag + Y_off
- # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
- y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
- y = y + D_residual
- # Cutting off padded chunks
- if pad_size > 0:
- y = y[:, :seq_len, :, :]
- y = y.reshape(batch_size, seq_len, -1)
- if ssm_state is not None and cache_params is not None:
- cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
- scan_output = self.norm(y, gate)
- # end ssd naive
- # 4. Final linear projection
- contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
- return contextualized_states
- # fmt: on
- def forward(
- self,
- hidden_states,
- cache_params: Optional[Mamba2Cache] = None,
- cache_position: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- ):
- if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
- return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
- dtype = hidden_states.dtype
- if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
- # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
- hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
- return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
- class Mamba2RMSNorm(nn.Module):
- def __init__(self, hidden_size, eps=1e-6):
- """
- Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
- """
- super().__init__()
- self.weight = nn.Parameter(torch.ones(hidden_size))
- self.variance_epsilon = eps
- def forward(self, hidden_states):
- input_dtype = hidden_states.dtype
- hidden_states = hidden_states.to(torch.float32)
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
- return self.weight * hidden_states.to(input_dtype)
- class Mamba2Block(nn.Module):
- def __init__(self, config, layer_idx):
- super().__init__()
- self.config = config
- self.layer_idx = layer_idx
- self.residual_in_fp32 = config.residual_in_fp32
- self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
- self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
- def forward(
- self,
- hidden_states,
- cache_params: Optional[Mamba2Cache] = None,
- cache_position: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- ):
- residual = hidden_states
- hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
- if self.residual_in_fp32:
- residual = residual.to(torch.float32)
- hidden_states = self.mixer(
- hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
- )
- hidden_states = residual + hidden_states
- return hidden_states
- class Mamba2PreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = Mamba2Config
- base_model_prefix = "backbone"
- _no_split_modules = ["Mamba2Block"]
- supports_gradient_checkpointing = True
- _is_stateful = True
- def _init_weights(self, module):
- """Initialize the weights."""
- if isinstance(module, Mamba2Mixer):
- module.A_log._no_weight_decay = True
- module.D._no_weight_decay = True
- dt = torch.exp(
- torch.rand(self.config.num_heads)
- * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
- + math.log(self.config.time_step_min)
- ).clamp(min=self.config.time_step_floor)
- # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
- inv_dt = dt + torch.log(-torch.expm1(-dt))
- with torch.no_grad():
- module.dt_bias.copy_(inv_dt)
- module.dt_bias._no_reinit = True
- if isinstance(module, nn.Linear):
- if module.bias is not None:
- if not getattr(module.bias, "_no_reinit", False):
- nn.init.zeros_(module.bias)
- elif isinstance(module, nn.Embedding):
- nn.init.normal_(module.weight, std=self.config.initializer_range)
- if self.config.rescale_prenorm_residual:
- # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
- # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
- # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
- # > -- GPT-2 :: https://openai.com/blog/better-language-models/
- #
- # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
- for name, p in module.named_parameters():
- if name in ["out_proj.weight"]:
- # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
- # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
- # We need to reinit p since this code could be called multiple times
- # Having just p *= scale would repeatedly scale it down
- nn.init.kaiming_uniform_(p, a=math.sqrt(5))
- with torch.no_grad():
- p /= math.sqrt(self.config.num_hidden_layers)
- @dataclass
- # Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
- class Mamba2Output(ModelOutput):
- """
- Class for the MAMBA2 model outputs.
- Args:
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- cache_params (`Mamba2Cache`):
- The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
- avoid providing the old `input_ids`.
- Includes both the State space model state matrices after the selective scan, and the Convolutional states
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- """
- last_hidden_state: Optional[torch.FloatTensor] = None
- cache_params: Optional[Mamba2Cache] = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- @dataclass
- # Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
- class Mamba2CausalLMOutput(ModelOutput):
- """
- Base class for causal language model (or autoregressive) outputs.
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Language modeling loss (for next-token prediction).
- logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
- cache_params (`Mamba2Cache`):
- The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
- avoid providing the old `input_ids`.
- Includes both the State space model state matrices after the selective scan, and the Convolutional states
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- """
- loss: Optional[torch.FloatTensor] = None
- logits: Optional[torch.FloatTensor] = None
- cache_params: Optional[Mamba2Cache] = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- MAMBA2_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- MAMBA2_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
- Indices of input sequence tokens in the vocabulary.
- If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
- `input_ids`.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- cache_params (`Mamba2Cache`, *optional*):
- If passed along, the model uses the previous state in all the blocks (which will give the output for the
- `input_ids` provided as if the model add `state_input_ids + input_ids` as context).
- use_cache (`bool`, *optional*):
- If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
- MAMBA2_START_DOCSTRING,
- )
- class Mamba2Model(Mamba2PreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
- self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
- # Initialize weights and apply final processing
- self._register_load_state_dict_pre_hook(self.load_hook)
- self.post_init()
- def load_hook(self, state_dict, prefix, *args):
- for k in state_dict:
- if "embedding." in k:
- state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
- break
- def get_input_embeddings(self):
- return self.embeddings
- def set_input_embeddings(self, new_embeddings):
- self.embeddings = new_embeddings
- @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=Mamba2Output,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.LongTensor] = None,
- cache_params: Optional[Mamba2Cache] = None,
- use_cache: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- **kwargs,
- ) -> Union[Tuple, Mamba2Output]:
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
- if inputs_embeds is None:
- inputs_embeds = self.embeddings(input_ids)
- if self.gradient_checkpointing and self.training and use_cache:
- use_cache = False
- if use_cache:
- if cache_params is None:
- cache_params = Mamba2Cache(
- self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
- )
- cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
- elif cache_position is None:
- # cases when we do manual forward instead of using `model.generate` which will initiate
- # `cache_position` and makes sure it is not None, throw error here instead of doing some
- # hack to conjecture the current cache position
- raise ValueError(
- "You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
- "you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
- "be initialized for you automatically"
- )
- else:
- cache_params = None
- hidden_states = inputs_embeds
- all_hidden_states = () if output_hidden_states else None
- for mixer_block in self.layers:
- if self.gradient_checkpointing and self.training:
- hidden_states = self._gradient_checkpointing_func(
- mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
- )
- else:
- hidden_states = mixer_block(
- hidden_states,
- cache_params=cache_params,
- cache_position=cache_position,
- attention_mask=attention_mask,
- )
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if use_cache:
- cache_params.seqlen_offset += inputs_embeds.shape[1]
- hidden_states = self.norm_f(hidden_states)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
- return Mamba2Output(
- last_hidden_state=hidden_states,
- cache_params=cache_params if use_cache else None,
- hidden_states=all_hidden_states,
- )
- @add_start_docstrings(
- """
- The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
- embeddings).
- """,
- MAMBA2_START_DOCSTRING,
- )
- class Mamba2ForCausalLM(Mamba2PreTrainedModel, GenerationMixin):
- _tied_weights_keys = []
- def __init__(self, config):
- super().__init__(config)
- self.backbone = Mamba2Model(config)
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- def get_input_embeddings(self):
- return self.backbone.get_input_embeddings()
- def set_input_embeddings(self, new_embeddings):
- return self.backbone.set_input_embeddings(new_embeddings)
- def prepare_inputs_for_generation(
- self,
- input_ids,
- inputs_embeds=None,
- use_cache=None,
- cache_params: Optional[Mamba2Cache] = None,
- cache_position: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- **kwargs,
- ):
- # Overwitten -- uses `cache_params` as opposed to `past_key_values`
- if inputs_embeds is not None:
- past_len = inputs_embeds.shape[1] + input_ids.shape[1]
- else:
- past_len = input_ids.shape[1]
- if use_cache:
- # `cache_position` should have been initialized in `generate`
- if cache_position is None:
- raise ValueError(
- "`cache_position` should not be None as it should have been initialized in "
- "`model.generate`, you are responsible for passing in a valid `cache_position` if "
- "you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
- )
- # how do we detect that we are in decoding without cache?
- if cache_position[0] > 0:
- input_ids = input_ids[:, -1][..., None]
- attention_mask = attention_mask[:, -1][..., None]
- else:
- # we initialize the `cache_position` to full size of `conv_states` at prefill stage
- # considering padding will be applied when input length is shorter, and truncation
- # will be applied when it is longer, so it will be equivalent to always have it match
- # the length of `cache_params.conv_states`, which is `config.conv_kernel`
- cache_position = torch.arange(0, past_len, device=input_ids.device)
- # if the cache is not used, we also do have to extend the attention mask here
- # TODO there is likely a cleverer way to do this
- extended_mask = torch.ones(
- attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
- )
- attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
- cache_params = None
- if attention_mask.shape[1] < past_len:
- # we have to update manually the attention mask if
- # we are in decoding without cache
- # and we don't have position_ids here
- # TODO but we should be able to use cache_position though at a later time
- extended_mask = torch.ones(
- attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
- )
- attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
- if inputs_embeds is not None and cache_params is None:
- model_inputs = {"inputs_embeds": inputs_embeds}
- else:
- model_inputs = {"input_ids": input_ids}
- model_inputs.update(
- {
- "attention_mask": attention_mask,
- "cache_params": cache_params,
- "use_cache": use_cache,
- "cache_position": cache_position,
- }
- )
- return model_inputs
- @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=Mamba2CausalLMOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- cache_params: Optional[Mamba2Cache] = None,
- labels: Optional[torch.LongTensor] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- use_cache: Optional[bool] = None,
- cache_position: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- **kwargs, # for now we need this for generation
- ) -> Union[Tuple, Mamba2CausalLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- mamba2_outputs = self.backbone(
- input_ids,
- cache_params=cache_params,
- inputs_embeds=inputs_embeds,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- use_cache=use_cache,
- cache_position=cache_position,
- attention_mask=attention_mask,
- )
- hidden_states = mamba2_outputs[0]
- logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
- loss = None
- if labels is not None:
- # move labels to correct device to enable model parallelism
- labels = labels.to(logits.device)
- # Shift so that tokens < n predict n
- shift_logits = logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
- if not return_dict:
- output = (logits,) + mamba2_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return Mamba2CausalLMOutput(
- loss=loss,
- logits=logits,
- cache_params=mamba2_outputs.cache_params,
- hidden_states=mamba2_outputs.hidden_states,
- )
|