| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for MarkupLM.
- """
- from typing import Optional, Union
- from ...file_utils import TensorType
- from ...processing_utils import ProcessorMixin
- from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy
- class MarkupLMProcessor(ProcessorMixin):
- r"""
- Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single
- processor.
- [`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model.
- It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings.
- Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level
- `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`.
- Args:
- feature_extractor (`MarkupLMFeatureExtractor`):
- An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input.
- tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`):
- An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input.
- parse_html (`bool`, *optional*, defaults to `True`):
- Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths.
- """
- feature_extractor_class = "MarkupLMFeatureExtractor"
- tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast")
- parse_html = True
- def __call__(
- self,
- html_strings=None,
- nodes=None,
- xpaths=None,
- node_labels=None,
- questions=None,
- add_special_tokens: bool = True,
- padding: Union[bool, str, PaddingStrategy] = False,
- truncation: Union[bool, str, TruncationStrategy] = None,
- max_length: Optional[int] = None,
- stride: int = 0,
- pad_to_multiple_of: Optional[int] = None,
- return_token_type_ids: Optional[bool] = None,
- return_attention_mask: Optional[bool] = None,
- return_overflowing_tokens: bool = False,
- return_special_tokens_mask: bool = False,
- return_offsets_mapping: bool = False,
- return_length: bool = False,
- verbose: bool = True,
- return_tensors: Optional[Union[str, TensorType]] = None,
- **kwargs,
- ) -> BatchEncoding:
- """
- This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it
- passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and
- returns the output.
- Optionally, one can also provide a `text` argument which is passed along as first sequence.
- Please refer to the docstring of the above two methods for more information.
- """
- # first, create nodes and xpaths
- if self.parse_html:
- if html_strings is None:
- raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`")
- if nodes is not None or xpaths is not None or node_labels is not None:
- raise ValueError(
- "Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`"
- )
- features = self.feature_extractor(html_strings)
- nodes = features["nodes"]
- xpaths = features["xpaths"]
- else:
- if html_strings is not None:
- raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.")
- if nodes is None or xpaths is None:
- raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`")
- # # second, apply the tokenizer
- if questions is not None and self.parse_html:
- if isinstance(questions, str):
- questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension)
- encoded_inputs = self.tokenizer(
- text=questions if questions is not None else nodes,
- text_pair=nodes if questions is not None else None,
- xpaths=xpaths,
- node_labels=node_labels,
- add_special_tokens=add_special_tokens,
- padding=padding,
- truncation=truncation,
- max_length=max_length,
- stride=stride,
- pad_to_multiple_of=pad_to_multiple_of,
- return_token_type_ids=return_token_type_ids,
- return_attention_mask=return_attention_mask,
- return_overflowing_tokens=return_overflowing_tokens,
- return_special_tokens_mask=return_special_tokens_mask,
- return_offsets_mapping=return_offsets_mapping,
- return_length=return_length,
- verbose=verbose,
- return_tensors=return_tensors,
- **kwargs,
- )
- return encoded_inputs
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
- to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
- docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- return tokenizer_input_names
|