| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619 |
- # MIT License
- #
- # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in all
- # copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- import math
- import os
- import warnings
- from dataclasses import dataclass
- from typing import Optional, Tuple, Union
- import torch
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPooling,
- MaskedLMOutput,
- MultipleChoiceModelOutput,
- NextSentencePredictorOutput,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import (
- ModelOutput,
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from .configuration_mobilebert import MobileBertConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased"
- _CONFIG_FOR_DOC = "MobileBertConfig"
- # TokenClassification docstring
- _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner"
- _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']"
- _TOKEN_CLASS_EXPECTED_LOSS = 0.03
- # QuestionAnswering docstring
- _CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2"
- _QA_EXPECTED_OUTPUT = "'a nice puppet'"
- _QA_EXPECTED_LOSS = 3.98
- _QA_TARGET_START_INDEX = 12
- _QA_TARGET_END_INDEX = 13
- # SequenceClassification docstring
- _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert"
- _SEQ_CLASS_EXPECTED_OUTPUT = "'others'"
- _SEQ_CLASS_EXPECTED_LOSS = "4.72"
- def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path):
- """Load tf checkpoints in a pytorch model."""
- try:
- import re
- import numpy as np
- import tensorflow as tf
- except ImportError:
- logger.error(
- "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
- "https://www.tensorflow.org/install/ for installation instructions."
- )
- raise
- tf_path = os.path.abspath(tf_checkpoint_path)
- logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
- # Load weights from TF model
- init_vars = tf.train.list_variables(tf_path)
- names = []
- arrays = []
- for name, shape in init_vars:
- logger.info(f"Loading TF weight {name} with shape {shape}")
- array = tf.train.load_variable(tf_path, name)
- names.append(name)
- arrays.append(array)
- for name, array in zip(names, arrays):
- name = name.replace("ffn_layer", "ffn")
- name = name.replace("FakeLayerNorm", "LayerNorm")
- name = name.replace("extra_output_weights", "dense/kernel")
- name = name.replace("bert", "mobilebert")
- name = name.split("/")
- # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
- # which are not required for using pretrained model
- if any(
- n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
- for n in name
- ):
- logger.info(f"Skipping {'/'.join(name)}")
- continue
- pointer = model
- for m_name in name:
- if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
- scope_names = re.split(r"_(\d+)", m_name)
- else:
- scope_names = [m_name]
- if scope_names[0] == "kernel" or scope_names[0] == "gamma":
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
- pointer = getattr(pointer, "bias")
- elif scope_names[0] == "output_weights":
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "squad":
- pointer = getattr(pointer, "classifier")
- else:
- try:
- pointer = getattr(pointer, scope_names[0])
- except AttributeError:
- logger.info(f"Skipping {'/'.join(name)}")
- continue
- if len(scope_names) >= 2:
- num = int(scope_names[1])
- pointer = pointer[num]
- if m_name[-11:] == "_embeddings":
- pointer = getattr(pointer, "weight")
- elif m_name == "kernel":
- array = np.transpose(array)
- try:
- assert (
- pointer.shape == array.shape
- ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
- except AssertionError as e:
- e.args += (pointer.shape, array.shape)
- raise
- logger.info(f"Initialize PyTorch weight {name}")
- pointer.data = torch.from_numpy(array)
- return model
- class NoNorm(nn.Module):
- def __init__(self, feat_size, eps=None):
- super().__init__()
- self.bias = nn.Parameter(torch.zeros(feat_size))
- self.weight = nn.Parameter(torch.ones(feat_size))
- def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
- return input_tensor * self.weight + self.bias
- NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm}
- class MobileBertEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings."""
- def __init__(self, config):
- super().__init__()
- self.trigram_input = config.trigram_input
- self.embedding_size = config.embedding_size
- self.hidden_size = config.hidden_size
- self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
- embed_dim_multiplier = 3 if self.trigram_input else 1
- embedded_input_size = self.embedding_size * embed_dim_multiplier
- self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size)
- self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- ) -> torch.Tensor:
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- if self.trigram_input:
- # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited
- # Devices (https://arxiv.org/abs/2004.02984)
- #
- # The embedding table in BERT models accounts for a substantial proportion of model size. To compress
- # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT.
- # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512
- # dimensional output.
- inputs_embeds = torch.cat(
- [
- nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0),
- inputs_embeds,
- nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0),
- ],
- dim=2,
- )
- if self.trigram_input or self.embedding_size != self.hidden_size:
- inputs_embeds = self.embedding_transformation(inputs_embeds)
- # Add positional embeddings and token type embeddings, then layer
- # normalize and perform dropout.
- position_embeddings = self.position_embeddings(position_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings = inputs_embeds + position_embeddings + token_type_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- class MobileBertSelfAttention(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.true_hidden_size, self.all_head_size)
- self.key = nn.Linear(config.true_hidden_size, self.all_head_size)
- self.value = nn.Linear(
- config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size
- )
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- query_tensor: torch.Tensor,
- key_tensor: torch.Tensor,
- value_tensor: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- ) -> Tuple[torch.Tensor]:
- mixed_query_layer = self.query(query_tensor)
- mixed_key_layer = self.key(key_tensor)
- mixed_value_layer = self.value(value_tensor)
- query_layer = self.transpose_for_scores(mixed_query_layer)
- key_layer = self.transpose_for_scores(mixed_key_layer)
- value_layer = self.transpose_for_scores(mixed_value_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
- attention_scores = attention_scores + attention_mask
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- return outputs
- class MobileBertSelfOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.use_bottleneck = config.use_bottleneck
- self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size)
- self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps)
- if not self.use_bottleneck:
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor:
- layer_outputs = self.dense(hidden_states)
- if not self.use_bottleneck:
- layer_outputs = self.dropout(layer_outputs)
- layer_outputs = self.LayerNorm(layer_outputs + residual_tensor)
- return layer_outputs
- class MobileBertAttention(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.self = MobileBertSelfAttention(config)
- self.output = MobileBertSelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.self.query = prune_linear_layer(self.self.query, index)
- self.self.key = prune_linear_layer(self.self.key, index)
- self.self.value = prune_linear_layer(self.self.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- query_tensor: torch.Tensor,
- key_tensor: torch.Tensor,
- value_tensor: torch.Tensor,
- layer_input: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- ) -> Tuple[torch.Tensor]:
- self_outputs = self.self(
- query_tensor,
- key_tensor,
- value_tensor,
- attention_mask,
- head_mask,
- output_attentions,
- )
- # Run a linear projection of `hidden_size` then add a residual
- # with `layer_input`.
- attention_output = self.output(self_outputs[0], layer_input)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- class MobileBertIntermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- class OutputBottleneck(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.true_hidden_size, config.hidden_size)
- self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor:
- layer_outputs = self.dense(hidden_states)
- layer_outputs = self.dropout(layer_outputs)
- layer_outputs = self.LayerNorm(layer_outputs + residual_tensor)
- return layer_outputs
- class MobileBertOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.use_bottleneck = config.use_bottleneck
- self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size)
- self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size)
- if not self.use_bottleneck:
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- else:
- self.bottleneck = OutputBottleneck(config)
- def forward(
- self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor
- ) -> torch.Tensor:
- layer_output = self.dense(intermediate_states)
- if not self.use_bottleneck:
- layer_output = self.dropout(layer_output)
- layer_output = self.LayerNorm(layer_output + residual_tensor_1)
- else:
- layer_output = self.LayerNorm(layer_output + residual_tensor_1)
- layer_output = self.bottleneck(layer_output, residual_tensor_2)
- return layer_output
- class BottleneckLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size)
- self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- layer_input = self.dense(hidden_states)
- layer_input = self.LayerNorm(layer_input)
- return layer_input
- class Bottleneck(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.key_query_shared_bottleneck = config.key_query_shared_bottleneck
- self.use_bottleneck_attention = config.use_bottleneck_attention
- self.input = BottleneckLayer(config)
- if self.key_query_shared_bottleneck:
- self.attention = BottleneckLayer(config)
- def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
- # This method can return three different tuples of values. These different values make use of bottlenecks,
- # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory
- # usage. These linear layer have weights that are learned during training.
- #
- # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the
- # key, query, value, and "layer input" to be used by the attention layer.
- # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor
- # in the attention self output, after the attention scores have been computed.
- #
- # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return
- # four values, three of which have been passed through a bottleneck: the query and key, passed through the same
- # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck.
- #
- # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck,
- # and the residual layer will be this value passed through a bottleneck.
- bottlenecked_hidden_states = self.input(hidden_states)
- if self.use_bottleneck_attention:
- return (bottlenecked_hidden_states,) * 4
- elif self.key_query_shared_bottleneck:
- shared_attention_input = self.attention(hidden_states)
- return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states)
- else:
- return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states)
- class FFNOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size)
- self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor:
- layer_outputs = self.dense(hidden_states)
- layer_outputs = self.LayerNorm(layer_outputs + residual_tensor)
- return layer_outputs
- class FFNLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.intermediate = MobileBertIntermediate(config)
- self.output = FFNOutput(config)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- intermediate_output = self.intermediate(hidden_states)
- layer_outputs = self.output(intermediate_output, hidden_states)
- return layer_outputs
- class MobileBertLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.use_bottleneck = config.use_bottleneck
- self.num_feedforward_networks = config.num_feedforward_networks
- self.attention = MobileBertAttention(config)
- self.intermediate = MobileBertIntermediate(config)
- self.output = MobileBertOutput(config)
- if self.use_bottleneck:
- self.bottleneck = Bottleneck(config)
- if config.num_feedforward_networks > 1:
- self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)])
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- ) -> Tuple[torch.Tensor]:
- if self.use_bottleneck:
- query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states)
- else:
- query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4
- self_attention_outputs = self.attention(
- query_tensor,
- key_tensor,
- value_tensor,
- layer_input,
- attention_mask,
- head_mask,
- output_attentions=output_attentions,
- )
- attention_output = self_attention_outputs[0]
- s = (attention_output,)
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- if self.num_feedforward_networks != 1:
- for i, ffn_module in enumerate(self.ffn):
- attention_output = ffn_module(attention_output)
- s += (attention_output,)
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output, hidden_states)
- outputs = (
- (layer_output,)
- + outputs
- + (
- torch.tensor(1000),
- query_tensor,
- key_tensor,
- value_tensor,
- layer_input,
- attention_output,
- intermediate_output,
- )
- + s
- )
- return outputs
- class MobileBertEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)])
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = False,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> Union[Tuple, BaseModelOutput]:
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_outputs = layer_module(
- hidden_states,
- attention_mask,
- head_mask[i],
- output_attentions,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- # Add last layer
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
- )
- class MobileBertPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.do_activate = config.classifier_activation
- if self.do_activate:
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- if not self.do_activate:
- return first_token_tensor
- else:
- pooled_output = self.dense(first_token_tensor)
- pooled_output = torch.tanh(pooled_output)
- return pooled_output
- class MobileBertPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- if isinstance(config.hidden_act, str):
- self.transform_act_fn = ACT2FN[config.hidden_act]
- else:
- self.transform_act_fn = config.hidden_act
- self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
- class MobileBertLMPredictionHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.transform = MobileBertPredictionHeadTransform(config)
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False)
- self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False)
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
- self.decoder.bias = self.bias
- def _tie_weights(self) -> None:
- self.decoder.bias = self.bias
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.transform(hidden_states)
- hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0))
- hidden_states += self.decoder.bias
- return hidden_states
- class MobileBertOnlyMLMHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.predictions = MobileBertLMPredictionHead(config)
- def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
- prediction_scores = self.predictions(sequence_output)
- return prediction_scores
- class MobileBertPreTrainingHeads(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.predictions = MobileBertLMPredictionHead(config)
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
- def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]:
- prediction_scores = self.predictions(sequence_output)
- seq_relationship_score = self.seq_relationship(pooled_output)
- return prediction_scores, seq_relationship_score
- class MobileBertPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = MobileBertConfig
- load_tf_weights = load_tf_weights_in_mobilebert
- base_model_prefix = "mobilebert"
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, nn.Linear):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, (nn.LayerNorm, NoNorm)):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- @dataclass
- class MobileBertForPreTrainingOutput(ModelOutput):
- """
- Output type of [`MobileBertForPreTraining`].
- Args:
- loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
- Total loss as the sum of the masked language modeling loss and the next sequence prediction
- (classification) loss.
- prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
- seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
- Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
- before SoftMax).
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- """
- loss: Optional[torch.FloatTensor] = None
- prediction_logits: torch.FloatTensor = None
- seq_relationship_logits: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- MOBILEBERT_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- MOBILEBERT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.",
- MOBILEBERT_START_DOCSTRING,
- )
- class MobileBertModel(MobileBertPreTrainedModel):
- """
- https://arxiv.org/pdf/2004.02984.pdf
- """
- def __init__(self, config, add_pooling_layer=True):
- super().__init__(config)
- self.config = config
- self.embeddings = MobileBertEmbeddings(config)
- self.encoder = MobileBertEncoder(config)
- self.pooler = MobileBertPooler(config) if add_pooling_layer else None
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.embeddings.word_embeddings = value
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPooling,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_hidden_states: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=device)
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
- # ourselves in which case we just need to make it broadcastable to all heads.
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- embedding_output = self.embeddings(
- input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
- )
- encoder_outputs = self.encoder(
- embedding_output,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings(
- """
- MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
- `next sentence prediction (classification)` head.
- """,
- MOBILEBERT_START_DOCSTRING,
- )
- class MobileBertForPreTraining(MobileBertPreTrainedModel):
- _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
- def __init__(self, config):
- super().__init__(config)
- self.mobilebert = MobileBertModel(config)
- self.cls = MobileBertPreTrainingHeads(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.cls.predictions.decoder
- def set_output_embeddings(self, new_embeddings):
- self.cls.predictions.decoder = new_embeddings
- self.cls.predictions.bias = new_embeddings.bias
- def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
- # resize dense output embedings at first
- self.cls.predictions.dense = self._get_resized_lm_head(
- self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True
- )
- return super().resize_token_embeddings(new_num_tokens=new_num_tokens)
- @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- next_sentence_label: Optional[torch.LongTensor] = None,
- output_attentions: Optional[torch.FloatTensor] = None,
- output_hidden_states: Optional[torch.FloatTensor] = None,
- return_dict: Optional[torch.FloatTensor] = None,
- ) -> Union[Tuple, MobileBertForPreTrainingOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
- (see `input_ids` docstring) Indices should be in `[0, 1]`:
- - 0 indicates sequence B is a continuation of sequence A,
- - 1 indicates sequence B is a random sequence.
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, MobileBertForPreTraining
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
- >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased")
- >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
- >>> # Batch size 1
- >>> outputs = model(input_ids)
- >>> prediction_logits = outputs.prediction_logits
- >>> seq_relationship_logits = outputs.seq_relationship_logits
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mobilebert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output, pooled_output = outputs[:2]
- prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
- total_loss = None
- if labels is not None and next_sentence_label is not None:
- loss_fct = CrossEntropyLoss()
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
- total_loss = masked_lm_loss + next_sentence_loss
- if not return_dict:
- output = (prediction_scores, seq_relationship_score) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return MobileBertForPreTrainingOutput(
- loss=total_loss,
- prediction_logits=prediction_scores,
- seq_relationship_logits=seq_relationship_score,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING)
- class MobileBertForMaskedLM(MobileBertPreTrainedModel):
- _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
- def __init__(self, config):
- super().__init__(config)
- self.mobilebert = MobileBertModel(config, add_pooling_layer=False)
- self.cls = MobileBertOnlyMLMHead(config)
- self.config = config
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.cls.predictions.decoder
- def set_output_embeddings(self, new_embeddings):
- self.cls.predictions.decoder = new_embeddings
- self.cls.predictions.bias = new_embeddings.bias
- def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
- # resize dense output embedings at first
- self.cls.predictions.dense = self._get_resized_lm_head(
- self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True
- )
- return super().resize_token_embeddings(new_num_tokens=new_num_tokens)
- @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MaskedLMOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output="'paris'",
- expected_loss=0.57,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, MaskedLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mobilebert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- prediction_scores = self.cls(sequence_output)
- masked_lm_loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss() # -100 index = padding token
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- if not return_dict:
- output = (prediction_scores,) + outputs[2:]
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
- return MaskedLMOutput(
- loss=masked_lm_loss,
- logits=prediction_scores,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- class MobileBertOnlyNSPHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
- def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
- seq_relationship_score = self.seq_relationship(pooled_output)
- return seq_relationship_score
- @add_start_docstrings(
- """MobileBert Model with a `next sentence prediction (classification)` head on top.""",
- MOBILEBERT_START_DOCSTRING,
- )
- class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.mobilebert = MobileBertModel(config)
- self.cls = MobileBertOnlyNSPHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- **kwargs,
- ) -> Union[Tuple, NextSentencePredictorOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
- (see `input_ids` docstring) Indices should be in `[0, 1]`.
- - 0 indicates sequence B is a continuation of sequence A,
- - 1 indicates sequence B is a random sequence.
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
- >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased")
- >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
- >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
- >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
- >>> outputs = model(**encoding, labels=torch.LongTensor([1]))
- >>> loss = outputs.loss
- >>> logits = outputs.logits
- ```"""
- if "next_sentence_label" in kwargs:
- warnings.warn(
- "The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
- " `labels` instead.",
- FutureWarning,
- )
- labels = kwargs.pop("next_sentence_label")
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mobilebert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- seq_relationship_score = self.cls(pooled_output)
- next_sentence_loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1))
- if not return_dict:
- output = (seq_relationship_score,) + outputs[2:]
- return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
- return NextSentencePredictorOutput(
- loss=next_sentence_loss,
- logits=seq_relationship_score,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
- pooled output) e.g. for GLUE tasks.
- """,
- MOBILEBERT_START_DOCSTRING,
- )
- # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing
- class MobileBertForSequenceClassification(MobileBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.config = config
- self.mobilebert = MobileBertModel(config)
- classifier_dropout = (
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
- )
- self.dropout = nn.Dropout(classifier_dropout)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
- output_type=SequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
- expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mobilebert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
- linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- MOBILEBERT_START_DOCSTRING,
- )
- # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing
- class MobileBertForQuestionAnswering(MobileBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.mobilebert = MobileBertModel(config, add_pooling_layer=False)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_QA,
- output_type=QuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- qa_target_start_index=_QA_TARGET_START_INDEX,
- qa_target_end_index=_QA_TARGET_END_INDEX,
- expected_output=_QA_EXPECTED_OUTPUT,
- expected_loss=_QA_EXPECTED_LOSS,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- start_positions: Optional[torch.Tensor] = None,
- end_positions: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mobilebert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
- a softmax) e.g. for RocStories/SWAG tasks.
- """,
- MOBILEBERT_START_DOCSTRING,
- )
- # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing
- class MobileBertForMultipleChoice(MobileBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.mobilebert = MobileBertModel(config)
- classifier_dropout = (
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
- )
- self.dropout = nn.Dropout(classifier_dropout)
- self.classifier = nn.Linear(config.hidden_size, 1)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(
- MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
- )
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MultipleChoiceModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
- num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
- `input_ids` above)
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
- input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
- attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
- token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
- position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
- inputs_embeds = (
- inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
- if inputs_embeds is not None
- else None
- )
- outputs = self.mobilebert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- reshaped_logits = logits.view(-1, num_choices)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(reshaped_logits, labels)
- if not return_dict:
- output = (reshaped_logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return MultipleChoiceModelOutput(
- loss=loss,
- logits=reshaped_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
- for Named-Entity-Recognition (NER) tasks.
- """,
- MOBILEBERT_START_DOCSTRING,
- )
- # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing
- class MobileBertForTokenClassification(MobileBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.mobilebert = MobileBertModel(config, add_pooling_layer=False)
- classifier_dropout = (
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
- )
- self.dropout = nn.Dropout(classifier_dropout)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
- expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mobilebert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
|