| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052 |
- # coding=utf-8
- # Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch MPNet model."""
- import math
- from typing import Optional, Tuple, Union
- import torch
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN, gelu
- from ...modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPooling,
- MaskedLMOutput,
- MultipleChoiceModelOutput,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
- from .configuration_mpnet import MPNetConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "microsoft/mpnet-base"
- _CONFIG_FOR_DOC = "MPNetConfig"
- class MPNetPreTrainedModel(PreTrainedModel):
- config_class = MPNetConfig
- base_model_prefix = "mpnet"
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, nn.Linear):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- class MPNetEmbeddings(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.padding_idx = 1
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
- self.position_embeddings = nn.Embedding(
- config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
- )
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, **kwargs):
- if position_ids is None:
- if input_ids is not None:
- position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)
- else:
- position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- position_embeddings = self.position_embeddings(position_ids)
- embeddings = inputs_embeds + position_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- def create_position_ids_from_inputs_embeds(self, inputs_embeds):
- """
- We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
- Args:
- inputs_embeds: torch.Tensor
- Returns: torch.Tensor
- """
- input_shape = inputs_embeds.size()[:-1]
- sequence_length = input_shape[1]
- position_ids = torch.arange(
- self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
- )
- return position_ids.unsqueeze(0).expand(input_shape)
- class MPNetSelfAttention(nn.Module):
- def __init__(self, config):
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads})"
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.q = nn.Linear(config.hidden_size, self.all_head_size)
- self.k = nn.Linear(config.hidden_size, self.all_head_size)
- self.v = nn.Linear(config.hidden_size, self.all_head_size)
- self.o = nn.Linear(config.hidden_size, config.hidden_size)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- head_mask=None,
- position_bias=None,
- output_attentions=False,
- **kwargs,
- ):
- q = self.q(hidden_states)
- k = self.k(hidden_states)
- v = self.v(hidden_states)
- q = self.transpose_for_scores(q)
- k = self.transpose_for_scores(k)
- v = self.transpose_for_scores(v)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(q, k.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- # Apply relative position embedding (precomputed in MPNetEncoder) if provided.
- if position_bias is not None:
- attention_scores += position_bias
- if attention_mask is not None:
- attention_scores = attention_scores + attention_mask
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- attention_probs = self.dropout(attention_probs)
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- c = torch.matmul(attention_probs, v)
- c = c.permute(0, 2, 1, 3).contiguous()
- new_c_shape = c.size()[:-2] + (self.all_head_size,)
- c = c.view(*new_c_shape)
- o = self.o(c)
- outputs = (o, attention_probs) if output_attentions else (o,)
- return outputs
- class MPNetAttention(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.attn = MPNetSelfAttention(config)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.attn.num_attention_heads, self.attn.attention_head_size, self.pruned_heads
- )
- self.attn.q = prune_linear_layer(self.attn.q, index)
- self.attn.k = prune_linear_layer(self.attn.k, index)
- self.attn.v = prune_linear_layer(self.attn.v, index)
- self.attn.o = prune_linear_layer(self.attn.o, index, dim=1)
- self.attn.num_attention_heads = self.attn.num_attention_heads - len(heads)
- self.attn.all_head_size = self.attn.attention_head_size * self.attn.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- head_mask=None,
- position_bias=None,
- output_attentions=False,
- **kwargs,
- ):
- self_outputs = self.attn(
- hidden_states,
- attention_mask,
- head_mask,
- position_bias,
- output_attentions=output_attentions,
- )
- attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertIntermediate
- class MPNetIntermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertOutput
- class MPNetOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- class MPNetLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.attention = MPNetAttention(config)
- self.intermediate = MPNetIntermediate(config)
- self.output = MPNetOutput(config)
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- head_mask=None,
- position_bias=None,
- output_attentions=False,
- **kwargs,
- ):
- self_attention_outputs = self.attention(
- hidden_states,
- attention_mask,
- head_mask,
- position_bias=position_bias,
- output_attentions=output_attentions,
- )
- attention_output = self_attention_outputs[0]
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- outputs = (layer_output,) + outputs
- return outputs
- class MPNetEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.n_heads = config.num_attention_heads
- self.layer = nn.ModuleList([MPNetLayer(config) for _ in range(config.num_hidden_layers)])
- self.relative_attention_bias = nn.Embedding(config.relative_attention_num_buckets, self.n_heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- output_hidden_states: bool = False,
- return_dict: bool = False,
- **kwargs,
- ):
- position_bias = self.compute_position_bias(hidden_states)
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_outputs = layer_module(
- hidden_states,
- attention_mask,
- head_mask[i],
- position_bias,
- output_attentions=output_attentions,
- **kwargs,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- # Add last layer
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- attentions=all_attentions,
- )
- def compute_position_bias(self, x, position_ids=None, num_buckets=32):
- bsz, qlen, klen = x.size(0), x.size(1), x.size(1)
- if position_ids is not None:
- context_position = position_ids[:, :, None]
- memory_position = position_ids[:, None, :]
- else:
- context_position = torch.arange(qlen, dtype=torch.long)[:, None]
- memory_position = torch.arange(klen, dtype=torch.long)[None, :]
- relative_position = memory_position - context_position
- rp_bucket = self.relative_position_bucket(relative_position, num_buckets=num_buckets)
- rp_bucket = rp_bucket.to(x.device)
- values = self.relative_attention_bias(rp_bucket)
- values = values.permute([2, 0, 1]).unsqueeze(0)
- values = values.expand((bsz, -1, qlen, klen)).contiguous()
- return values
- @staticmethod
- def relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
- ret = 0
- n = -relative_position
- num_buckets //= 2
- ret += (n < 0).to(torch.long) * num_buckets
- n = torch.abs(n)
- max_exact = num_buckets // 2
- is_small = n < max_exact
- val_if_large = max_exact + (
- torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
- ).to(torch.long)
- val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
- ret += torch.where(is_small, n, val_if_large)
- return ret
- # Copied from transformers.models.bert.modeling_bert.BertPooler
- class MPNetPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- MPNET_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`MPNetConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- MPNET_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.",
- MPNET_START_DOCSTRING,
- )
- class MPNetModel(MPNetPreTrainedModel):
- def __init__(self, config, add_pooling_layer=True):
- super().__init__(config)
- self.config = config
- self.embeddings = MPNetEmbeddings(config)
- self.encoder = MPNetEncoder(config)
- self.pooler = MPNetPooler(config) if add_pooling_layer else None
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.embeddings.word_embeddings = value
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPooling,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- **kwargs,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=device)
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds)
- encoder_outputs = self.encoder(
- embedding_output,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- class MPNetForMaskedLM(MPNetPreTrainedModel):
- _tied_weights_keys = ["lm_head.decoder"]
- def __init__(self, config):
- super().__init__(config)
- self.mpnet = MPNetModel(config, add_pooling_layer=False)
- self.lm_head = MPNetLMHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.lm_head.decoder
- def set_output_embeddings(self, new_embeddings):
- self.lm_head.decoder = new_embeddings
- self.lm_head.bias = new_embeddings.bias
- @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MaskedLMOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mpnet(
- input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- prediction_scores = self.lm_head(sequence_output)
- masked_lm_loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- if not return_dict:
- output = (prediction_scores,) + outputs[2:]
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
- return MaskedLMOutput(
- loss=masked_lm_loss,
- logits=prediction_scores,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- class MPNetLMHead(nn.Module):
- """MPNet Head for masked and permuted language modeling."""
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
- self.decoder.bias = self.bias
- def _tie_weights(self):
- self.decoder.bias = self.bias
- def forward(self, features, **kwargs):
- x = self.dense(features)
- x = gelu(x)
- x = self.layer_norm(x)
- # project back to size of vocabulary with bias
- x = self.decoder(x)
- return x
- @add_start_docstrings(
- """
- MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
- output) e.g. for GLUE tasks.
- """,
- MPNET_START_DOCSTRING,
- )
- class MPNetForSequenceClassification(MPNetPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.mpnet = MPNetModel(config, add_pooling_layer=False)
- self.classifier = MPNetClassificationHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=SequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mpnet(
- input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
- softmax) e.g. for RocStories/SWAG tasks.
- """,
- MPNET_START_DOCSTRING,
- )
- class MPNetForMultipleChoice(MPNetPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.mpnet = MPNetModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, 1)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MultipleChoiceModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
- num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
- `input_ids` above)
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
- flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
- flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
- flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
- flat_inputs_embeds = (
- inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
- if inputs_embeds is not None
- else None
- )
- outputs = self.mpnet(
- flat_input_ids,
- position_ids=flat_position_ids,
- attention_mask=flat_attention_mask,
- head_mask=head_mask,
- inputs_embeds=flat_inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- reshaped_logits = logits.view(-1, num_choices)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(reshaped_logits, labels)
- if not return_dict:
- output = (reshaped_logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return MultipleChoiceModelOutput(
- loss=loss,
- logits=reshaped_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- Named-Entity-Recognition (NER) tasks.
- """,
- MPNET_START_DOCSTRING,
- )
- class MPNetForTokenClassification(MPNetPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.mpnet = MPNetModel(config, add_pooling_layer=False)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mpnet(
- input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- class MPNetClassificationHead(nn.Module):
- """Head for sentence-level classification tasks."""
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
- def forward(self, features, **kwargs):
- x = features[:, 0, :] # take <s> token (equiv. to BERT's [CLS] token)
- x = self.dropout(x)
- x = self.dense(x)
- x = torch.tanh(x)
- x = self.dropout(x)
- x = self.out_proj(x)
- return x
- @add_start_docstrings(
- """
- MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
- layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- MPNET_START_DOCSTRING,
- )
- class MPNetForQuestionAnswering(MPNetPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.mpnet = MPNetModel(config, add_pooling_layer=False)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=QuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.mpnet(
- input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- def create_position_ids_from_input_ids(input_ids, padding_idx):
- """
- Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
- are ignored. This is modified from fairseq's `utils.make_positions`. :param torch.Tensor x: :return torch.Tensor:
- """
- # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
- mask = input_ids.ne(padding_idx).int()
- incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
- return incremental_indices.long() + padding_idx
|