| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907 |
- # coding=utf-8
- # Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch MPT model."""
- import math
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
- from torch.nn import functional as F
- from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
- from ...generation import GenerationMixin
- from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
- from ...modeling_outputs import (
- BaseModelOutputWithPastAndCrossAttentions,
- CausalLMOutputWithCrossAttentions,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutputWithPast,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import logging
- from .configuration_mpt import MptConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b"
- _CONFIG_FOR_DOC = "MptConfig"
- def build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max=8, device=None):
- r"""
- Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
- relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
- the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
- https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
- """
- alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length)
- num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads))
- base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.int64, device=device).float()
- base = base * (alibi_bias_max / num_heads_power_of_2)
- slopes = 1.0 / torch.pow(2, base)
- slopes = slopes.view(1, num_heads_power_of_2, 1, 1)
- if num_heads_power_of_2 != num_heads:
- slopes = torch.concat([slopes[:, 1::2, ...], slopes[:, ::2, ...]], dim=1)[:, :num_heads, ...]
- alibi = alibi * slopes
- return alibi.squeeze(0)
- class MptAttention(nn.Module):
- """Multi-head self attention.
- Using torch or triton attention implemetation enables user to also use additive bias.
- """
- def __init__(self, config: MptConfig):
- super().__init__()
- self.hidden_size = config.hidden_size
- self.n_heads = config.n_heads
- self.max_seq_length = config.max_seq_len
- self.head_dim = self.hidden_size // self.n_heads
- self.softmax_scale = config.attn_config.softmax_scale
- if self.softmax_scale is None:
- self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads)
- self.attn_dropout_p = config.attn_config.attn_pdrop
- self.clip_qkv = config.attn_config.clip_qkv
- self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
- self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
- def forward(
- self,
- hidden_states: torch.Tensor,
- position_bias: torch.Tensor,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- ):
- batch_size, seq_length = hidden_states.shape[:2]
- mixed_qkv = self.Wqkv(hidden_states)
- if self.clip_qkv:
- mixed_qkv = mixed_qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
- query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2)
- query_states = query_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
- if past_key_value is not None:
- if len(past_key_value) != 0:
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- past_key_value = (key_states, value_states)
- else:
- past_key_value = (key_states, value_states)
- attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * self.softmax_scale
- query_length = seq_length if past_key_value is None else seq_length + past_key_value[0].shape[2]
- if position_bias is not None:
- if len(position_bias.shape) != 3:
- raise ValueError(f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}")
- key_length = key_states.shape[-2]
- position_bias_query_index = max(0, position_bias.size(1) - query_length)
- position_bias_key_index = max(0, position_bias.size(2) - key_length)
- position_bias = position_bias[:, position_bias_query_index:, position_bias_key_index:]
- attention_scores = attention_scores + position_bias
- if attention_mask is not None:
- attention_scores = attention_scores.masked_fill(attention_mask, torch.finfo(query_states.dtype).min)
- # (batch_size, n_heads, seq_length, key_length)
- attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(value_states.dtype)
- attn_weights = nn.functional.dropout(attn_weights, p=self.attn_dropout_p, training=self.training)
- context_states = torch.matmul(attn_weights, value_states)
- context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
- attn_output = self.out_proj(context_states)
- return attn_output, attn_weights, past_key_value
- class MptMLP(nn.Module):
- def __init__(self, config: MptConfig):
- super().__init__()
- hidden_size = config.hidden_size
- self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False)
- self.act = nn.GELU(approximate="none")
- self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False)
- self.hidden_dropout = config.attn_config.attn_pdrop
- def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
- hidden_states = self.act(self.up_proj(hidden_states))
- intermediate_output = self.down_proj(hidden_states)
- output = F.dropout(intermediate_output, p=self.hidden_dropout, training=self.training)
- output = output + residual
- return output
- class MptBlock(nn.Module):
- def __init__(self, config: MptConfig):
- super().__init__()
- hidden_size = config.hidden_size
- self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- # backward compatibility with weights on the Hub
- self.norm_1.bias = None
- self.num_heads = config.n_heads
- self.attn = MptAttention(config)
- self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- # backward compatibility with weights on the Hub
- self.norm_2.bias = None
- self.ffn = MptMLP(config)
- self.dropout_rate = config.attn_config.attn_pdrop
- self.resid_attn_dropout = nn.Dropout(self.dropout_rate)
- def forward(
- self,
- hidden_states: torch.Tensor,
- position_bias: torch.Tensor,
- attention_mask: torch.Tensor,
- layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
- use_cache: bool = False,
- output_attentions: bool = False,
- ):
- # hidden_states: [batch_size, seq_length, hidden_size]
- # Layer norm at the beginning of the transformer layer.
- layernorm_output = self.norm_1(hidden_states)
- residual = hidden_states
- # Self attention.
- attn_outputs, attn_weights, past_key_value = self.attn(
- layernorm_output,
- position_bias=position_bias,
- attention_mask=attention_mask,
- past_key_value=layer_past,
- )
- hidden_states = self.resid_attn_dropout(attn_outputs) + residual
- layernorm_output = self.norm_2(hidden_states)
- # Get residual
- residual = hidden_states
- # MLP.
- output = self.ffn(layernorm_output, residual)
- outputs = (output,)
- if use_cache:
- outputs += (past_key_value,)
- if output_attentions:
- outputs += (attn_weights,)
- return outputs # hidden_states, present, attentions
- class MptPreTrainedModel(PreTrainedModel):
- config_class = MptConfig
- base_model_prefix = "transformer"
- supports_gradient_checkpointing = True
- _no_split_modules = ["MptBlock"]
- _keys_to_ignore_on_load_missing = [r"lm_head.*."]
- def __init__(self, *inputs, **kwargs):
- super().__init__(*inputs, **kwargs)
- def _init_weights(self, module: nn.Module):
- """Initialize the weights."""
- if isinstance(module, nn.Linear):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, LayerNorm):
- if module.bias is not None:
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- @staticmethod
- def _convert_to_mpt_cache(
- past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
- ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
- """
- Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...]))
- """
- batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
- batch_size_times_num_heads = batch_size * num_heads
- # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
- # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
- return tuple(
- (
- layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length),
- layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim),
- )
- for layer_past in past_key_value
- )
- MPT_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`MptConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- MPT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
- `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
- (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
- If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
- `input_ids`.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
- Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
- `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
- their past given to this model should not be passed as `input_ids` as they have already been computed.
- Each element of `past_key_values` is a tuple (past_key, past_value):
- - past_key: [batch_size * num_heads, head_dim, kv_length]
- - past_value: [batch_size * num_heads, kv_length, head_dim]
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
- `past_key_values`).
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare Mpt Model transformer outputting raw hidden-states without any specific head on top.",
- MPT_START_DOCSTRING,
- )
- class MptModel(MptPreTrainedModel):
- def __init__(self, config: MptConfig):
- super().__init__(config)
- self.hidden_size = config.hidden_size
- self.num_heads = config.n_heads
- # Embedding + LN Embedding
- self.wte = nn.Embedding(config.vocab_size, self.hidden_size)
- # Transformer blocks
- self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)])
- # Final Layer Norm
- self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
- # backward compatibility with weights on the Hub
- self.norm_f.bias = None
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.wte
- def build_mpt_alibi_tensor(self, num_heads, sequence_length, alibi_bias_max=8, device=None):
- return build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max, device)
- def set_input_embeddings(self, new_embeddings: torch.Tensor):
- self.wte = new_embeddings
- @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPastAndCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- batch_size, seq_length = input_ids.shape
- elif inputs_embeds is not None:
- batch_size, seq_length, _ = inputs_embeds.shape
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- if past_key_values is None:
- past_key_values = tuple([None] * len(self.blocks))
- if inputs_embeds is None:
- inputs_embeds = self.wte(input_ids)
- hidden_states = inputs_embeds
- presents = () if use_cache else None
- all_self_attentions = () if output_attentions else None
- all_hidden_states = () if output_hidden_states else None
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- # Compute alibi tensor: check build_alibi_tensor documentation
- seq_length_with_past = seq_length
- past_key_values_length = 0
- if past_key_values[0] is not None:
- past_key_values_length = past_key_values[0][0].shape[2]
- seq_length_with_past = seq_length_with_past + past_key_values_length
- if attention_mask is None:
- attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
- else:
- attention_mask = attention_mask.to(hidden_states.device)
- alibi = self.build_mpt_alibi_tensor(self.num_heads, self.config.max_seq_len, device=hidden_states.device)
- causal_mask = _prepare_4d_causal_attention_mask(
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
- )
- causal_mask = causal_mask.bool()
- for block, layer_past in zip(self.blocks, past_key_values):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if self.gradient_checkpointing and self.training:
- outputs = self._gradient_checkpointing_func(
- block.__call__,
- hidden_states,
- alibi,
- causal_mask,
- layer_past,
- use_cache,
- output_attentions,
- )
- else:
- outputs = block(
- hidden_states,
- layer_past=layer_past,
- attention_mask=causal_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- position_bias=alibi,
- )
- hidden_states = outputs[0]
- if use_cache is True:
- presents = presents + (outputs[1],)
- if output_attentions:
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
- # Add last hidden state
- hidden_states = self.norm_f(hidden_states)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=presents,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- )
- @add_start_docstrings(
- """
- The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
- embeddings).
- """,
- MPT_START_DOCSTRING,
- )
- class MptForCausalLM(MptPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config: MptConfig):
- super().__init__(config)
- self.transformer = MptModel(config)
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings: torch.Tensor):
- self.lm_head = new_embeddings
- @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=CausalLMOutputWithCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- lm_logits = self.lm_head(hidden_states)
- loss = None
- if labels is not None:
- # move labels to correct device to enable model parallelism
- labels = labels.to(lm_logits.device)
- # Shift so that tokens < n predict n
- shift_logits = lm_logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- batch_size, seq_length, vocab_size = shift_logits.shape
- # Flatten the tokens
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(
- shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
- )
- if not return_dict:
- output = (lm_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return CausalLMOutputWithCrossAttentions(
- loss=loss,
- logits=lm_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
- def _reorder_cache(
- self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
- ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
- """
- This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
- [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
- beam_idx at every generation step.
- Output shares the same memory storage as `past`.
- """
- # Get a copy of `beam_idx` on all the devices where we need those indices.
- device_to_beam_idx = {
- past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
- }
- reordered_past = tuple(
- (
- layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
- layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
- )
- for layer_past in past
- )
- return reordered_past
- @add_start_docstrings(
- """
- The MPT Model transformer with a sequence classification head on top (linear layer).
- [`MptForSequenceClassification`] uses the last token in order to do the classification, as other causal models
- (e.g. GPT-1) do.
- Since it does classification on the last token, it requires to know the position of the last token. If a
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
- each row of the batch).
- """,
- MPT_START_DOCSTRING,
- )
- class MptForSequenceClassification(MptPreTrainedModel):
- def __init__(self, config: MptConfig):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = MptModel(config)
- self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=SequenceClassifierOutputWithPast,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- logits = self.score(hidden_states)
- if input_ids is not None:
- batch_size = input_ids.shape[0]
- else:
- batch_size = inputs_embeds.shape[0]
- if self.config.pad_token_id is None and batch_size != 1:
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
- if self.config.pad_token_id is None:
- sequence_lengths = -1
- else:
- if input_ids is not None:
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
- sequence_lengths = sequence_lengths.to(logits.device)
- else:
- sequence_lengths = -1
- logger.warning_once(
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
- "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
- )
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(pooled_logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(pooled_logits, labels)
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(pooled_logits, labels)
- if not return_dict:
- output = (pooled_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutputWithPast(
- loss=loss,
- logits=pooled_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
- @add_start_docstrings(
- """
- MPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- Named-Entity-Recognition (NER) tasks.
- """,
- MPT_START_DOCSTRING,
- )
- class MptForTokenClassification(MptPreTrainedModel):
- def __init__(self, config: MptConfig):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = MptModel(config)
- if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
- classifier_dropout = config.classifier_dropout
- elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
- classifier_dropout = config.hidden_dropout
- else:
- classifier_dropout = 0.1
- self.dropout = nn.Dropout(classifier_dropout)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- **deprecated_arguments,
- ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- hidden_states = self.dropout(hidden_states)
- logits = self.classifier(hidden_states)
- loss = None
- if labels is not None:
- # move labels to correct device to enable model parallelism
- labels = labels.to(logits.device)
- batch_size, seq_length = labels.shape
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(
- logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
- )
- if not return_dict:
- output = (logits,) + transformer_outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
- @add_start_docstrings(
- """
- The MPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD
- (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- MPT_START_DOCSTRING,
- )
- class MptForQuestionAnswering(MptPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.transformer = MptModel(config)
- self.qa_outputs = nn.Linear(config.hidden_size, 2)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
|