| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- # coding=utf-8
- # Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """OLMo model configuration"""
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class OlmoConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`OlmoModel`]. It is used to instantiate an OLMo
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the [allenai/OLMo-7B-hf](https://huggingface.co/allenai/OLMo-7B-hf).
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 50304):
- Vocabulary size of the OLMo model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`OlmoModel`]
- hidden_size (`int`, *optional*, defaults to 4096):
- Dimension of the hidden representations.
- intermediate_size (`int`, *optional*, defaults to 11008):
- Dimension of the MLP representations.
- num_hidden_layers (`int`, *optional*, defaults to 32):
- Number of hidden layers in the Transformer decoder.
- num_attention_heads (`int`, *optional*, defaults to 32):
- Number of attention heads for each attention layer in the Transformer decoder.
- num_key_value_heads (`int`, *optional*):
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
- by meanpooling all the original heads within that group. For more details checkout [this
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
- `num_attention_heads`.
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
- The non-linear activation function (function or string) in the decoder.
- max_position_embeddings (`int`, *optional*, defaults to 2048):
- The maximum sequence length that this model might ever be used with.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if `config.is_decoder=True`.
- pad_token_id (`int`, *optional*, defaults to 1):
- Padding token id.
- bos_token_id (`int`, *optional*):
- Beginning of stream token id.
- eos_token_id (`int`, *optional*, defaults to 50279):
- End of stream token id.
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
- Whether to tie weight embeddings
- rope_theta (`float`, *optional*, defaults to 10000.0):
- The base period of the RoPE embeddings.
- rope_scaling (`Dict`, *optional*):
- Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
- strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
- `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
- `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
- these scaling strategies behave:
- https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
- experimental feature, subject to breaking API changes in future versions.
- attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- clip_qkv (`float`, *optional*):
- If not `None`, elements of query, key and value attention states are clipped so that their
- absolute value does not exceed this value.
- ```python
- >>> from transformers import OlmoModel, OlmoConfig
- >>> # Initializing a OLMo 7B style configuration
- >>> configuration = OlmoConfig()
- >>> # Initializing a model from the OLMo 7B style configuration
- >>> model = OlmoModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "olmo"
- keys_to_ignore_at_inference = ["past_key_values"]
- def __init__(
- self,
- vocab_size=50304,
- hidden_size=4096,
- intermediate_size=11008,
- num_hidden_layers=32,
- num_attention_heads=32,
- num_key_value_heads=None,
- hidden_act="silu",
- max_position_embeddings=2048,
- initializer_range=0.02,
- use_cache=True,
- pad_token_id=1,
- bos_token_id=None,
- eos_token_id=50279,
- tie_word_embeddings=False,
- rope_theta=10000.0,
- rope_scaling=None,
- attention_bias=False,
- attention_dropout=0.0,
- clip_qkv=None,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.max_position_embeddings = max_position_embeddings
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- # for backward compatibility
- if num_key_value_heads is None:
- num_key_value_heads = num_attention_heads
- self.num_key_value_heads = num_key_value_heads
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- self.use_cache = use_cache
- self.rope_theta = rope_theta
- self.rope_scaling = rope_scaling
- self._rope_scaling_validation()
- self.attention_bias = attention_bias
- self.attention_dropout = attention_dropout
- self.clip_qkv = clip_qkv
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- tie_word_embeddings=tie_word_embeddings,
- **kwargs,
- )
- def _rope_scaling_validation(self):
- """
- Validate the `rope_scaling` configuration.
- """
- if self.rope_scaling is None:
- return
- if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
- raise ValueError(
- "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
- )
- rope_scaling_type = self.rope_scaling.get("type", None)
- rope_scaling_factor = self.rope_scaling.get("factor", None)
- if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
- raise ValueError(
- f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
- )
- if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
- raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|