| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857 |
- # coding=utf-8
- # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch OpenAI GPT model."""
- import json
- import math
- import os
- from dataclasses import dataclass
- from typing import Any, Dict, Optional, Tuple, Union
- import torch
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import gelu_new, silu
- from ...generation import GenerationMixin
- from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
- from ...modeling_utils import PreTrainedModel, SequenceSummary
- from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
- from ...utils import (
- ModelOutput,
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from .configuration_openai import OpenAIGPTConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "openai-community/openai-gpt"
- _CONFIG_FOR_DOC = "OpenAIGPTConfig"
- def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
- """Load tf pre-trained weights in a pytorch model (from NumPy arrays here)"""
- import re
- import numpy as np
- if ".ckpt" in openai_checkpoint_folder_path:
- openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)
- logger.info(f"Loading weights from {openai_checkpoint_folder_path}")
- with open(openai_checkpoint_folder_path + "/parameters_names.json", "r", encoding="utf-8") as names_handle:
- names = json.load(names_handle)
- with open(openai_checkpoint_folder_path + "/params_shapes.json", "r", encoding="utf-8") as shapes_handle:
- shapes = json.load(shapes_handle)
- offsets = np.cumsum([np.prod(shape) for shape in shapes])
- init_params = [np.load(openai_checkpoint_folder_path + f"/params_{n}.npy") for n in range(10)]
- init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
- init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
- # This was used when we had a single embedding matrix for positions and tokens
- # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
- # del init_params[1]
- init_params = [arr.squeeze() for arr in init_params]
- # Check that the token and position embeddings weight dimensions map those of the init parameters.
- if model.tokens_embed.weight.shape != init_params[1].shape:
- raise ValueError(
- f"tokens_embed.weight.shape: {model.tokens_embed.weight.shape} does not match init_param[1].shape:"
- f" {init_params[1].shape}"
- )
- if model.positions_embed.weight.shape != init_params[0].shape:
- raise ValueError(
- f"positions_embed.weight.shape: {model.positions_embed.weight.shape} does not match init_param[0].shape:"
- f" {init_params[0].shape}"
- )
- model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
- model.positions_embed.weight.data = torch.from_numpy(init_params[0])
- names.pop(0)
- # Pop position and token embedding arrays
- init_params.pop(0)
- init_params.pop(0)
- for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
- name = name[6:] # skip "model/"
- if name[-2:] != ":0":
- raise ValueError(f"Layer {name} does not end with :0")
- name = name[:-2]
- name = name.split("/")
- pointer = model
- for m_name in name:
- if re.fullmatch(r"[A-Za-z]+\d+", m_name):
- scope_names = re.split(r"(\d+)", m_name)
- else:
- scope_names = [m_name]
- if scope_names[0] == "g":
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "b":
- pointer = getattr(pointer, "bias")
- elif scope_names[0] == "w":
- pointer = getattr(pointer, "weight")
- else:
- pointer = getattr(pointer, scope_names[0])
- if len(scope_names) >= 2:
- num = int(scope_names[1])
- pointer = pointer[num]
- # Ensure that the pointer and array have compatible shapes.
- if pointer.shape != array.shape:
- raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
- logger.info(f"Initialize PyTorch weight {name}")
- pointer.data = torch.from_numpy(array)
- return model
- ACT_FNS = {"relu": nn.ReLU(), "silu": silu, "gelu": gelu_new, "swish": silu}
- class Attention(nn.Module):
- def __init__(self, nx, n_positions, config, scale=False):
- super().__init__()
- n_state = nx # in Attention: n_state=768 (nx=n_embd)
- # [switch nx => n_state from Block to Attention to keep identical to TF implementation]
- if n_state % config.n_head != 0:
- raise ValueError(f"Attention n_state shape: {n_state} must be divisible by config.n_head {config.n_head}")
- self.register_buffer(
- "bias",
- torch.tril(torch.ones(n_positions, n_positions)).view(1, 1, n_positions, n_positions),
- persistent=False,
- )
- self.n_head = config.n_head
- self.split_size = n_state
- self.scale = scale
- self.c_attn = Conv1D(n_state * 3, nx)
- self.c_proj = Conv1D(n_state, nx)
- self.attn_dropout = nn.Dropout(config.attn_pdrop)
- self.resid_dropout = nn.Dropout(config.resid_pdrop)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
- )
- index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
- # Prune conv1d layers
- self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
- self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
- # Update hyper params
- self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
- self.n_head = self.n_head - len(heads)
- self.pruned_heads = self.pruned_heads.union(heads)
- def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False):
- w = torch.matmul(q, k)
- if self.scale:
- w = w / math.sqrt(v.size(-1))
- # w = w * self.bias + -1e9 * (1 - self.bias) # TF implementation method: mask_attn_weights
- # XD: self.b may be larger than w, so we need to crop it
- b = self.bias[:, :, : w.size(-2), : w.size(-1)]
- w = w * b + -1e4 * (1 - b)
- if attention_mask is not None:
- # Apply the attention mask
- w = w + attention_mask
- w = nn.functional.softmax(w, dim=-1)
- w = self.attn_dropout(w)
- # Mask heads if we want to
- if head_mask is not None:
- w = w * head_mask
- outputs = [torch.matmul(w, v)]
- if output_attentions:
- outputs.append(w)
- return outputs
- def merge_heads(self, x):
- x = x.permute(0, 2, 1, 3).contiguous()
- new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
- return x.view(*new_x_shape) # in Tensorflow implementation: fct merge_states
- def split_heads(self, x, k=False):
- new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
- x = x.view(*new_x_shape) # in Tensorflow implementation: fct split_states
- if k:
- return x.permute(0, 2, 3, 1)
- else:
- return x.permute(0, 2, 1, 3)
- def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False):
- x = self.c_attn(x)
- query, key, value = x.split(self.split_size, dim=2)
- query = self.split_heads(query)
- key = self.split_heads(key, k=True)
- value = self.split_heads(value)
- attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions)
- a = attn_outputs[0]
- a = self.merge_heads(a)
- a = self.c_proj(a)
- a = self.resid_dropout(a)
- outputs = [a] + attn_outputs[1:]
- return outputs # a, (attentions)
- class MLP(nn.Module):
- def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
- super().__init__()
- nx = config.n_embd
- self.c_fc = Conv1D(n_state, nx)
- self.c_proj = Conv1D(nx, n_state)
- self.act = ACT_FNS[config.afn]
- self.dropout = nn.Dropout(config.resid_pdrop)
- def forward(self, x):
- h = self.act(self.c_fc(x))
- h2 = self.c_proj(h)
- return self.dropout(h2)
- class Block(nn.Module):
- def __init__(self, n_positions, config, scale=False):
- super().__init__()
- nx = config.n_embd
- self.attn = Attention(nx, n_positions, config, scale)
- self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
- self.mlp = MLP(4 * nx, config)
- self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
- def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False):
- attn_outputs = self.attn(
- x,
- attention_mask=attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- )
- a = attn_outputs[0]
- n = self.ln_1(x + a)
- m = self.mlp(n)
- h = self.ln_2(n + m)
- outputs = [h] + attn_outputs[1:]
- return outputs
- class OpenAIGPTPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = OpenAIGPTConfig
- load_tf_weights = load_tf_weights_in_openai_gpt
- base_model_prefix = "transformer"
- def _init_weights(self, module):
- """Initialize the weights."""
- if isinstance(module, (nn.Linear, Conv1D)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- @dataclass
- class OpenAIGPTDoubleHeadsModelOutput(ModelOutput):
- """
- Base class for outputs of models predicting if two sentences are consecutive or not.
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Language modeling loss.
- mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
- Multiple choice classification loss.
- logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
- mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
- Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- """
- loss: Optional[torch.FloatTensor] = None
- mc_loss: Optional[torch.FloatTensor] = None
- logits: torch.FloatTensor = None
- mc_logits: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- OPENAI_GPT_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- OPENAI_GPT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.",
- OPENAI_GPT_START_DOCSTRING,
- )
- class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
- self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
- self.drop = nn.Dropout(config.embd_pdrop)
- self.h = nn.ModuleList([Block(config.n_positions, config, scale=True) for _ in range(config.n_layer)])
- self.register_buffer("position_ids", torch.arange(config.n_positions), persistent=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.tokens_embed
- def set_input_embeddings(self, new_embeddings):
- self.tokens_embed = new_embeddings
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
- """
- for layer, heads in heads_to_prune.items():
- self.h[layer].attn.prune_heads(heads)
- @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- if position_ids is None:
- # Code is different from when we had a single embedding matrix from position and token embeddings
- position_ids = self.position_ids[None, : input_shape[-1]]
- # Attention mask.
- if attention_mask is not None:
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and the dtype's smallest value for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
- attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
- # Prepare head mask if needed
- head_mask = self.get_head_mask(head_mask, self.config.n_layer)
- if inputs_embeds is None:
- inputs_embeds = self.tokens_embed(input_ids)
- position_embeds = self.positions_embed(position_ids)
- if token_type_ids is not None:
- token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
- token_type_embeds = self.tokens_embed(token_type_ids)
- else:
- token_type_embeds = 0
- hidden_states = inputs_embeds + position_embeds + token_type_embeds
- hidden_states = self.drop(hidden_states)
- output_shape = input_shape + (hidden_states.size(-1),)
- all_attentions = () if output_attentions else None
- all_hidden_states = () if output_hidden_states else None
- for i, block in enumerate(self.h):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- outputs = block(hidden_states, attention_mask, head_mask[i], output_attentions=output_attentions)
- hidden_states = outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (outputs[1],)
- hidden_states = hidden_states.view(*output_shape)
- # Add last layer
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- attentions=all_attentions,
- )
- @add_start_docstrings(
- """
- OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
- embeddings).
- """,
- OPENAI_GPT_START_DOCSTRING,
- )
- class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config):
- super().__init__(config)
- self.transformer = OpenAIGPTModel(config)
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=CausalLMOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], CausalLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- lm_logits = self.lm_head(hidden_states)
- loss = None
- if labels is not None:
- # Shift so that tokens < n predict n
- shift_logits = lm_logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
- if not return_dict:
- output = (lm_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return CausalLMOutput(
- loss=loss,
- logits=lm_logits,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
- def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]:
- # Overwritten -- old model with reduced inputs
- return {"input_ids": input_ids}
- @add_start_docstrings(
- """
- OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
- RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
- input embeddings, the classification head takes as input the input of a specified classification token index in the
- input sequence).
- """,
- OPENAI_GPT_START_DOCSTRING,
- )
- class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config):
- super().__init__(config)
- config.num_labels = 1
- self.transformer = OpenAIGPTModel(config)
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
- self.multiple_choice_head = SequenceSummary(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=OpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- mc_token_ids: Optional[torch.LongTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- mc_labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], OpenAIGPTDoubleHeadsModelOutput]:
- r"""
- mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
- Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
- 1]`.
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- `labels = input_ids` Indices are selected in `[-1, 0, ..., config.vocab_size]` All labels set to `-100` are
- ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
- mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
- where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
- Return:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, OpenAIGPTDoubleHeadsModel
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
- >>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt")
- >>> tokenizer.add_special_tokens(
- ... {"cls_token": "[CLS]"}
- ... ) # Add a [CLS] to the vocabulary (we should train it also!)
- >>> model.resize_token_embeddings(len(tokenizer))
- >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
- >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
- >>> mc_token_ids = torch.tensor([input_ids.size(-1) - 1, input_ids.size(-1) - 1]).unsqueeze(0) # Batch size 1
- >>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
- >>> lm_logits = outputs.logits
- >>> mc_logits = outputs.mc_logits
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- lm_logits = self.lm_head(hidden_states)
- mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
- lm_loss, mc_loss = None, None
- if mc_labels is not None:
- loss_fct = CrossEntropyLoss()
- mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
- if labels is not None:
- shift_logits = lm_logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- loss_fct = CrossEntropyLoss()
- lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
- if not return_dict:
- output = (lm_logits, mc_logits) + transformer_outputs[1:]
- if mc_loss is not None:
- output = (mc_loss,) + output
- return ((lm_loss,) + output) if lm_loss is not None else output
- return OpenAIGPTDoubleHeadsModelOutput(
- loss=lm_loss,
- mc_loss=mc_loss,
- logits=lm_logits,
- mc_logits=mc_logits,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
- @add_start_docstrings(
- """
- The Original OpenAI GPT Model transformer with a sequence classification head on top (linear layer).
- [`OpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal
- models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the
- last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding
- token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since
- it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take
- the last value in each row of the batch).
- """,
- OPENAI_GPT_START_DOCSTRING,
- )
- class OpenAIGPTForSequenceClassification(OpenAIGPTPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = OpenAIGPTModel(config)
- self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=SequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- logits = self.score(hidden_states)
- if input_ids is not None:
- batch_size, sequence_length = input_ids.shape[:2]
- else:
- batch_size, sequence_length = inputs_embeds.shape[:2]
- # Ensure the batch size is > 1 if there is no padding.
- if self.config.pad_token_id is None and batch_size != 1:
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
- if self.config.pad_token_id is None:
- sequence_lengths = -1
- else:
- if input_ids is not None:
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
- sequence_lengths = sequence_lengths.to(logits.device)
- else:
- sequence_lengths = -1
- logger.warning_once(
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
- "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
- )
- pooled_logits = logits[range(batch_size), sequence_lengths]
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(pooled_logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(pooled_logits, labels)
- if not return_dict:
- output = (pooled_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=pooled_logits,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
|