| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 |
- # coding=utf-8
- # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization classes for OpenAI GPT."""
- import json
- import os
- import re
- import unicodedata
- from typing import Optional, Tuple
- from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
- from ...utils import logging
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {
- "vocab_file": "vocab.json",
- "merges_file": "merges.txt",
- }
- # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
- def whitespace_tokenize(text):
- """Runs basic whitespace cleaning and splitting on a piece of text."""
- text = text.strip()
- if not text:
- return []
- tokens = text.split()
- return tokens
- # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
- class BasicTokenizer:
- """
- Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
- Args:
- do_lower_case (`bool`, *optional*, defaults to `True`):
- Whether or not to lowercase the input when tokenizing.
- never_split (`Iterable`, *optional*):
- Collection of tokens which will never be split during tokenization. Only has an effect when
- `do_basic_tokenize=True`
- tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
- Whether or not to tokenize Chinese characters.
- This should likely be deactivated for Japanese (see this
- [issue](https://github.com/huggingface/transformers/issues/328)).
- strip_accents (`bool`, *optional*):
- Whether or not to strip all accents. If this option is not specified, then it will be determined by the
- value for `lowercase` (as in the original BERT).
- do_split_on_punc (`bool`, *optional*, defaults to `True`):
- In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
- the full context of the words, such as contractions.
- """
- def __init__(
- self,
- do_lower_case=True,
- never_split=None,
- tokenize_chinese_chars=True,
- strip_accents=None,
- do_split_on_punc=True,
- ):
- if never_split is None:
- never_split = []
- self.do_lower_case = do_lower_case
- self.never_split = set(never_split)
- self.tokenize_chinese_chars = tokenize_chinese_chars
- self.strip_accents = strip_accents
- self.do_split_on_punc = do_split_on_punc
- def tokenize(self, text, never_split=None):
- """
- Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
- Args:
- never_split (`List[str]`, *optional*)
- Kept for backward compatibility purposes. Now implemented directly at the base class level (see
- [`PreTrainedTokenizer.tokenize`]) List of token not to split.
- """
- # union() returns a new set by concatenating the two sets.
- never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
- text = self._clean_text(text)
- # This was added on November 1st, 2018 for the multilingual and Chinese
- # models. This is also applied to the English models now, but it doesn't
- # matter since the English models were not trained on any Chinese data
- # and generally don't have any Chinese data in them (there are Chinese
- # characters in the vocabulary because Wikipedia does have some Chinese
- # words in the English Wikipedia.).
- if self.tokenize_chinese_chars:
- text = self._tokenize_chinese_chars(text)
- # prevents treating the same character with different unicode codepoints as different characters
- unicode_normalized_text = unicodedata.normalize("NFC", text)
- orig_tokens = whitespace_tokenize(unicode_normalized_text)
- split_tokens = []
- for token in orig_tokens:
- if token not in never_split:
- if self.do_lower_case:
- token = token.lower()
- if self.strip_accents is not False:
- token = self._run_strip_accents(token)
- elif self.strip_accents:
- token = self._run_strip_accents(token)
- split_tokens.extend(self._run_split_on_punc(token, never_split))
- output_tokens = whitespace_tokenize(" ".join(split_tokens))
- return output_tokens
- def _run_strip_accents(self, text):
- """Strips accents from a piece of text."""
- text = unicodedata.normalize("NFD", text)
- output = []
- for char in text:
- cat = unicodedata.category(char)
- if cat == "Mn":
- continue
- output.append(char)
- return "".join(output)
- def _run_split_on_punc(self, text, never_split=None):
- """Splits punctuation on a piece of text."""
- if not self.do_split_on_punc or (never_split is not None and text in never_split):
- return [text]
- chars = list(text)
- i = 0
- start_new_word = True
- output = []
- while i < len(chars):
- char = chars[i]
- if _is_punctuation(char):
- output.append([char])
- start_new_word = True
- else:
- if start_new_word:
- output.append([])
- start_new_word = False
- output[-1].append(char)
- i += 1
- return ["".join(x) for x in output]
- def _tokenize_chinese_chars(self, text):
- """Adds whitespace around any CJK character."""
- output = []
- for char in text:
- cp = ord(char)
- if self._is_chinese_char(cp):
- output.append(" ")
- output.append(char)
- output.append(" ")
- else:
- output.append(char)
- return "".join(output)
- def _is_chinese_char(self, cp):
- """Checks whether CP is the codepoint of a CJK character."""
- # This defines a "chinese character" as anything in the CJK Unicode block:
- # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
- #
- # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
- # despite its name. The modern Korean Hangul alphabet is a different block,
- # as is Japanese Hiragana and Katakana. Those alphabets are used to write
- # space-separated words, so they are not treated specially and handled
- # like the all of the other languages.
- if (
- (cp >= 0x4E00 and cp <= 0x9FFF)
- or (cp >= 0x3400 and cp <= 0x4DBF) #
- or (cp >= 0x20000 and cp <= 0x2A6DF) #
- or (cp >= 0x2A700 and cp <= 0x2B73F) #
- or (cp >= 0x2B740 and cp <= 0x2B81F) #
- or (cp >= 0x2B820 and cp <= 0x2CEAF) #
- or (cp >= 0xF900 and cp <= 0xFAFF)
- or (cp >= 0x2F800 and cp <= 0x2FA1F) #
- ): #
- return True
- return False
- def _clean_text(self, text):
- """Performs invalid character removal and whitespace cleanup on text."""
- output = []
- for char in text:
- cp = ord(char)
- if cp == 0 or cp == 0xFFFD or _is_control(char):
- continue
- if _is_whitespace(char):
- output.append(" ")
- else:
- output.append(char)
- return "".join(output)
- def get_pairs(word):
- """
- Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
- strings)
- """
- pairs = set()
- prev_char = word[0]
- for char in word[1:]:
- pairs.add((prev_char, char))
- prev_char = char
- return pairs
- def text_standardize(text):
- """
- fixes some issues the spacy tokenizer had on books corpus also does some whitespace standardization
- """
- text = text.replace("—", "-")
- text = text.replace("–", "-")
- text = text.replace("―", "-")
- text = text.replace("…", "...")
- text = text.replace("´", "'")
- text = re.sub(r"""(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)""", r" \1 ", text)
- text = re.sub(r"\s*\n\s*", " \n ", text)
- text = re.sub(r"[^\S\n]+", " ", text)
- return text.strip()
- class OpenAIGPTTokenizer(PreTrainedTokenizer):
- """
- Construct a GPT Tokenizer. Based on Byte-Pair-Encoding with the following peculiarities:
- - lowercases all inputs,
- - uses `SpaCy` tokenizer and `ftfy` for pre-BPE tokenization if they are installed, fallback to BERT's
- `BasicTokenizer` if not.
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- merges_file (`str`):
- Path to the merges file.
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
- try:
- import ftfy
- from spacy.lang.en import English
- _nlp = English()
- self.nlp = _nlp.tokenizer
- self.fix_text = ftfy.fix_text
- except ImportError:
- logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
- self.nlp = BasicTokenizer(do_lower_case=True)
- self.fix_text = None
- with open(vocab_file, encoding="utf-8") as vocab_handle:
- self.encoder = json.load(vocab_handle)
- self.decoder = {v: k for k, v in self.encoder.items()}
- with open(merges_file, encoding="utf-8") as merges_handle:
- merges = merges_handle.read().split("\n")[1:-1]
- merges = [tuple(merge.split()) for merge in merges]
- self.bpe_ranks = dict(zip(merges, range(len(merges))))
- self.cache = {}
- super().__init__(unk_token=unk_token, **kwargs)
- @property
- def do_lower_case(self):
- return True
- @property
- def vocab_size(self):
- return len(self.encoder)
- def get_vocab(self):
- return dict(self.encoder, **self.added_tokens_encoder)
- def bpe(self, token):
- word = tuple(token[:-1]) + (token[-1] + "</w>",)
- if token in self.cache:
- return self.cache[token]
- pairs = get_pairs(word)
- if not pairs:
- return token + "</w>"
- while True:
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
- if bigram not in self.bpe_ranks:
- break
- first, second = bigram
- new_word = []
- i = 0
- while i < len(word):
- try:
- j = word.index(first, i)
- except ValueError:
- new_word.extend(word[i:])
- break
- else:
- new_word.extend(word[i:j])
- i = j
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
- new_word.append(first + second)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- new_word = tuple(new_word)
- word = new_word
- if len(word) == 1:
- break
- else:
- pairs = get_pairs(word)
- word = " ".join(word)
- if word == "\n </w>":
- word = "\n</w>"
- self.cache[token] = word
- return word
- def _tokenize(self, text):
- """Tokenize a string."""
- split_tokens = []
- if self.fix_text is None:
- # Using BERT's BasicTokenizer
- text = self.nlp.tokenize(text)
- for token in text:
- split_tokens.extend(list(self.bpe(token).split(" ")))
- else:
- # Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
- text = self.nlp(text_standardize(self.fix_text(text)))
- for token in text:
- split_tokens.extend(list(self.bpe(token.text.lower()).split(" ")))
- return split_tokens
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.encoder.get(token, self.encoder.get(self.unk_token))
- def _convert_id_to_token(self, index):
- """Converts an id in a token (BPE) using the vocab."""
- return self.decoder.get(index, self.unk_token)
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- out_string = "".join(tokens).replace("</w>", " ").strip()
- return out_string
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- merge_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
- )
- with open(vocab_file, "w", encoding="utf-8") as f:
- f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
- index = 0
- with open(merge_file, "w", encoding="utf-8") as writer:
- writer.write("#version: 0.2\n")
- for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
- if index != token_index:
- logger.warning(
- f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
- " Please check that the tokenizer is not corrupted!"
- )
- index = token_index
- writer.write(" ".join(bpe_tokens) + "\n")
- index += 1
- return vocab_file, merge_file
|