| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- # coding=utf-8
- # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Fast Tokenization classes for OpenAI GPT."""
- from typing import Optional, Tuple
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import logging
- from .tokenization_openai import OpenAIGPTTokenizer
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
- class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a "fast" GPT Tokenizer (backed by HuggingFace's *tokenizers* library). Based on Byte-Pair-Encoding with
- the following peculiarities:
- - lower case all inputs
- - uses BERT's BasicTokenizer for pre-BPE tokenization
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- merges_file (`str`):
- Path to the merges file.
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- slow_tokenizer_class = OpenAIGPTTokenizer
- def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<unk>", **kwargs):
- super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs)
- @property
- def do_lower_case(self):
- return True
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- files = self._tokenizer.model.save(save_directory, name=filename_prefix)
- return tuple(files)
|