| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487 |
- # coding=utf-8
- # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch OPT model."""
- from typing import List, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_attn_mask_utils import (
- _prepare_4d_causal_attention_mask,
- _prepare_4d_causal_attention_mask_for_sdpa,
- )
- from ...modeling_outputs import (
- BaseModelOutputWithPast,
- CausalLMOutputWithPast,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutputWithPast,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- is_flash_attn_2_available,
- is_flash_attn_greater_or_equal_2_10,
- logging,
- replace_return_docstrings,
- )
- from .configuration_opt import OPTConfig
- if is_flash_attn_2_available():
- from ...modeling_flash_attention_utils import _flash_attention_forward
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "facebook/opt-350m"
- _CONFIG_FOR_DOC = "OPTConfig"
- # Base model docstring
- _EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
- # SequenceClassification docstring
- _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc"
- _SEQ_CLASS_EXPECTED_LOSS = 1.71
- _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
- class OPTLearnedPositionalEmbedding(nn.Embedding):
- """
- This module learns positional embeddings up to a fixed maximum size.
- """
- def __init__(self, num_embeddings: int, embedding_dim: int):
- # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
- # and adjust num_embeddings appropriately. Other models don't have this hack
- self.offset = 2
- super().__init__(num_embeddings + self.offset, embedding_dim)
- def forward(
- self,
- attention_mask: torch.LongTensor,
- past_key_values_length: int = 0,
- position_ids: Optional[torch.LongTensor] = None,
- ):
- """`input_ids_shape` is expected to be [bsz x seqlen]."""
- if position_ids is None:
- position_ids = torch.cumsum(attention_mask, dim=1)
- position_ids = (position_ids * attention_mask - 1).long()
- # cut positions if `past_key_values_length` is > 0
- position_ids = position_ids[:, past_key_values_length:]
- return super().forward(position_ids + self.offset)
- class OPTAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(
- self,
- config: OPTConfig,
- is_decoder: bool = False,
- **kwargs,
- ):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.dropout = config.attention_dropout
- self.enable_bias = config.enable_bias
- self.head_dim = self.embed_dim // self.num_heads
- self.is_causal = True
- if (self.head_dim * self.num_heads) != self.embed_dim:
- raise ValueError(
- f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
- f" and `num_heads`: {self.num_heads})."
- )
- self.scaling = self.head_dim**-0.5
- self.is_decoder = is_decoder
- self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
- self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
- self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
- self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int) -> torch.Tensor:
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- # isn't needed in normal attention, but needed in flash attention so to keep the signature same
- position_ids: Optional[torch.Tensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- """Input shape: Batch x Time x Channel"""
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
- bsz, tgt_len, _ = hidden_states.size()
- # get query proj
- query_states = self.q_proj(hidden_states) * self.scaling
- # get key, value proj
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- else:
- # self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
- proj_shape = (bsz * self.num_heads, -1, self.head_dim)
- query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
- key_states = key_states.view(*proj_shape)
- value_states = value_states.view(*proj_shape)
- src_len = key_states.size(1)
- attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
- if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
- raise ValueError(
- f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
- f" {attn_weights.size()}"
- )
- if attention_mask is not None:
- if attention_mask.size() != (bsz, 1, tgt_len, src_len):
- raise ValueError(
- f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
- )
- attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
- attn_weights = torch.max(
- attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
- )
- attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
- # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
- if attn_weights.dtype == torch.float16:
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16)
- else:
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
- if layer_head_mask is not None:
- if layer_head_mask.size() != (self.num_heads,):
- raise ValueError(
- f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
- f" {layer_head_mask.size()}"
- )
- attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
- attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
- if output_attentions:
- # this operation is a bit awkward, but it's required to
- # make sure that attn_weights keeps its gradient.
- # In order to do so, attn_weights have to be reshaped
- # twice and have to be reused in the following
- attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
- attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
- else:
- attn_weights_reshaped = None
- attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
- attn_output = torch.bmm(attn_probs, value_states)
- if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
- attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
- attn_output = attn_output.transpose(1, 2)
- # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
- # partitioned aross GPUs when using tensor-parallelism.
- attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
- attn_output = self.out_proj(attn_output)
- return attn_output, attn_weights_reshaped, past_key_value
- class OptFlashAttention2(OPTAttention):
- """
- OPT flash attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched.
- The only required change would be on the forward pass where it needs to correctly call the public API of flash
- attention and deal with padding tokens in case the input contains any of them.
- """
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- position_ids: Optional[torch.Tensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- """Input shape: Batch x Time x Channel"""
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
- bsz, _, _ = hidden_states.size()
- # get query proj
- query_states = self.q_proj(hidden_states)
- # get key, value proj
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- else:
- # self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
- query_length = query_states.shape[1]
- tgt_len = key_states.shape[-2]
- # Flash attention requires the input to have the shape
- # batch_size x seq_length x head_dim x hidden_dim
- query_states = query_states.view(bsz, query_length, self.num_heads, self.head_dim)
- key_states = key_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
- value_states = value_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
- attn_dropout = self.dropout if self.training else 0.0
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
- # therefore the input hidden states gets silently casted in float32. Hence, we need
- # cast them back in float16 just to be sure everything works as expected.
- input_dtype = query_states.dtype
- if input_dtype == torch.float32:
- if torch.is_autocast_enabled():
- target_dtype = torch.get_autocast_gpu_dtype()
- # Handle the case where the model is quantized
- elif hasattr(self.config, "_pre_quantization_dtype"):
- target_dtype = self.config._pre_quantization_dtype
- else:
- target_dtype = self.q_proj.weight.dtype
- logger.warning_once(
- f"The input hidden states seems to be silently casted in float32, this might be related to"
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
- f" {target_dtype}."
- )
- query_states = query_states.to(target_dtype)
- key_states = key_states.to(target_dtype)
- value_states = value_states.to(target_dtype)
- attn_output = _flash_attention_forward(
- query_states,
- key_states,
- value_states,
- attention_mask,
- query_length,
- position_ids=position_ids,
- dropout=attn_dropout,
- is_causal=self.is_causal,
- use_top_left_mask=self._flash_attn_uses_top_left_mask,
- )
- attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim)
- attn_output = self.out_proj(attn_weights_reshaped)
- if not output_attentions:
- attn_weights_reshaped = None
- return attn_output, attn_weights_reshaped, past_key_value
- class OPTSdpaAttention(OPTAttention):
- """
- OPT sdpa attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched.
- The only required change would be on the forward pass where it needs to correctly call the public API of sdpa
- attention and deal with padding tokens in case the input contains any of them.
- """
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- position_ids: Optional[torch.Tensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- if output_attentions or layer_head_mask is not None:
- logger.warning_once(
- "OPTModel is using SDPA attention, which currently does not support output_attentions=True."
- 'failing back to eager attention. remove warning using attn_implementation="eager".'
- )
- return super().forward(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- key_value_states=key_value_states,
- ) # TODO after merge add position_ids=position_ids
- is_cross_attention = key_value_states is not None
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states) * self.scaling
- query_states = self._shape(query_states, -1, bsz)
- # get key, value proj
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- else:
- # self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
- # shape now is (bsz, num_heads, seq_len, head_dim), all are continuous
- causal_mask = attention_mask
- if attention_mask is not None:
- causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
- # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
- # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
- is_causal = True if causal_mask is None and q_len > 1 else False
- attn_output = torch.nn.functional.scaled_dot_product_attention(
- query_states,
- key_states,
- value_states,
- attn_mask=causal_mask,
- dropout_p=self.dropout if self.training else 0.0,
- is_causal=is_causal,
- # this model uses the scaling factor in the query projection for some reason, but not in Q@K^T
- # so we need to scale to remove scaling in SDPA to have similar results with eager.
- # Maybe needs a change in the model to remove scaling in query projection
- scale=1.0,
- )
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.view(bsz, q_len, -1)
- attn_output = self.out_proj(attn_output)
- return attn_output, None, past_key_value
- OPT_ATTENTION_CLASSES = {
- "eager": OPTAttention,
- "flash_attention_2": OptFlashAttention2,
- "sdpa": OPTSdpaAttention,
- }
- class OPTDecoderLayer(nn.Module):
- def __init__(self, config: OPTConfig):
- super().__init__()
- self.embed_dim = config.hidden_size
- self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True)
- self.do_layer_norm_before = config.do_layer_norm_before
- self.dropout = config.dropout
- self.activation_fn = ACT2FN[config.activation_function]
- self.self_attn_layer_norm = nn.LayerNorm(
- self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine
- )
- self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias)
- self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias)
- self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- output_attentions: Optional[bool] = False,
- use_cache: Optional[bool] = False,
- position_ids: Optional[torch.LongTensor] = None,
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
- `(encoder_attention_heads,)`.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
- (see `past_key_values`).
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
- """
- residual = hidden_states
- # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
- if self.do_layer_norm_before:
- hidden_states = self.self_attn_layer_norm(hidden_states)
- # Self Attention
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
- hidden_states=hidden_states,
- past_key_value=past_key_value,
- position_ids=position_ids,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- # 350m applies layer norm AFTER attention
- if not self.do_layer_norm_before:
- hidden_states = self.self_attn_layer_norm(hidden_states)
- # Fully Connected
- hidden_states_shape = hidden_states.shape
- hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
- residual = hidden_states
- # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
- if self.do_layer_norm_before:
- hidden_states = self.final_layer_norm(hidden_states)
- hidden_states = self.fc1(hidden_states)
- hidden_states = self.activation_fn(hidden_states)
- hidden_states = self.fc2(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = (residual + hidden_states).view(hidden_states_shape)
- # 350m applies layer norm AFTER attention
- if not self.do_layer_norm_before:
- hidden_states = self.final_layer_norm(hidden_states)
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (self_attn_weights,)
- if use_cache:
- outputs += (present_key_value,)
- return outputs
- OPT_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`OPTConfig`]):
- Model configuration class with all the parameters of the model. Initializing with a config file does not
- load the weights associated with the model, only the configuration. Check out the
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- @add_start_docstrings(
- "The bare OPT Model outputting raw hidden-states without any specific head on top.",
- OPT_START_DOCSTRING,
- )
- class OPTPreTrainedModel(PreTrainedModel):
- config_class = OPTConfig
- base_model_prefix = "model"
- supports_gradient_checkpointing = True
- _no_split_modules = ["OPTDecoderLayer"]
- _supports_flash_attn_2 = True
- _supports_sdpa = True
- def _init_weights(self, module):
- std = self.config.init_std
- if isinstance(module, nn.Linear):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- OPT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
- `past_key_values`).
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
- information on the default strategy.
- head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.n_positions - 1]`. for padding use -1.
- [What are position IDs?](../glossary#position-ids)
- """
- class OPTDecoder(OPTPreTrainedModel):
- """
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]
- Args:
- config: OPTConfig
- """
- def __init__(self, config: OPTConfig):
- super().__init__(config)
- self.dropout = config.dropout
- self.layerdrop = config.layerdrop
- self.padding_idx = config.pad_token_id
- self.max_target_positions = config.max_position_embeddings
- self.vocab_size = config.vocab_size
- self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
- self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
- if config.word_embed_proj_dim != config.hidden_size:
- self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
- else:
- self.project_out = None
- if config.word_embed_proj_dim != config.hidden_size:
- self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
- else:
- self.project_in = None
- # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
- # with checkpoints that have been fine-tuned before transformers v4.20.1
- # see https://github.com/facebookresearch/metaseq/pull/164
- if config.do_layer_norm_before and not config._remove_final_layer_norm:
- self.final_layer_norm = nn.LayerNorm(
- config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
- )
- else:
- self.final_layer_norm = None
- self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
- self._use_sdpa = config._attn_implementation == "sdpa"
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embed_tokens
- def set_input_embeddings(self, value):
- self.embed_tokens = value
- def _update_causal_mask(
- self,
- inputs_embeds: torch.Tensor,
- input_shape: Tuple[int, int],
- past_key_values_length: int,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- ):
- """
- Updates the causal mask for the decoder.
- """
- batch_size, seq_length = input_shape
- mask_seq_length = past_key_values_length + seq_length
- if self._use_flash_attention_2:
- # 2d mask is passed through the layers
- causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
- attention_mask = (
- torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
- if attention_mask is None
- else attention_mask
- )
- return causal_attention_mask, attention_mask
- if attention_mask is None:
- attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
- elif attention_mask.shape[1] != mask_seq_length:
- raise ValueError(
- f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
- f"{mask_seq_length} (sum of the lengths of current and past inputs)"
- )
- if self._use_sdpa and not output_attentions and head_mask is None:
- causal_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
- attention_mask, input_shape, inputs_embeds, past_key_values_length
- )
- else:
- causal_attention_mask = _prepare_4d_causal_attention_mask(
- attention_mask, input_shape, inputs_embeds, past_key_values_length
- )
- return causal_attention_mask, attention_mask
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- position_ids: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple, BaseModelOutputWithPast]:
- r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
- cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
- that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
- all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.n_positions - 1]`. for padding use -1.
- [What are position IDs?](../glossary#position-ids)
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # retrieve input_ids and inputs_embeds
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
- elif input_ids is not None:
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input_ids)
- past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
- causal_attention_mask, attention_mask = self._update_causal_mask(
- inputs_embeds, input_shape, past_key_values_length, attention_mask, head_mask, output_attentions
- )
- # embed positions
- if position_ids is None:
- position_ids = torch.cumsum(attention_mask, dim=1)
- position_ids = (position_ids * attention_mask - 1).long()
- # cut positions if `past_key_values_length` is > 0
- position_ids = position_ids[:, past_key_values_length:]
- pos_embeds = self.embed_positions(attention_mask, past_key_values_length, position_ids=position_ids)
- if self.project_in is not None:
- inputs_embeds = self.project_in(inputs_embeds)
- hidden_states = inputs_embeds + pos_embeds
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- # decoder layers
- all_hidden_states = () if output_hidden_states else None
- all_self_attns = () if output_attentions else None
- next_decoder_cache = () if use_cache else None
- # check if head_mask has a correct number of layers specified if desired
- for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
- if attn_mask is not None:
- if attn_mask.size()[0] != (len(self.layers)):
- raise ValueError(
- f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
- f" {head_mask.size()[0]}."
- )
- for idx, decoder_layer in enumerate(self.layers):
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.training:
- dropout_probability = torch.rand([])
- if dropout_probability < self.layerdrop:
- continue
- past_key_value = past_key_values[idx] if past_key_values is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- decoder_layer.__call__,
- hidden_states,
- causal_attention_mask,
- head_mask[idx] if head_mask is not None else None,
- None,
- output_attentions,
- use_cache,
- position_ids,
- )
- else:
- layer_outputs = decoder_layer(
- hidden_states,
- attention_mask=causal_attention_mask,
- position_ids=position_ids,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
- if output_attentions:
- all_self_attns += (layer_outputs[1],)
- if self.final_layer_norm is not None:
- hidden_states = self.final_layer_norm(hidden_states)
- if self.project_out is not None:
- hidden_states = self.project_out(hidden_states)
- # add hidden states from the last decoder layer
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- next_cache = next_decoder_cache if use_cache else None
- if not return_dict:
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
- return BaseModelOutputWithPast(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- )
- @add_start_docstrings(
- "The bare OPT Model outputting raw hidden-states without any specific head on top.",
- OPT_START_DOCSTRING,
- )
- class OPTModel(OPTPreTrainedModel):
- def __init__(self, config: OPTConfig):
- super().__init__(config)
- self.decoder = OPTDecoder(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.decoder.embed_tokens
- def set_input_embeddings(self, value):
- self.decoder.embed_tokens = value
- def get_decoder(self):
- return self.decoder
- @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPast,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_EXPECTED_OUTPUT_SHAPE,
- )
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- position_ids: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple, BaseModelOutputWithPast]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
- decoder_outputs = self.decoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- if not return_dict:
- return decoder_outputs
- return BaseModelOutputWithPast(
- last_hidden_state=decoder_outputs.last_hidden_state,
- past_key_values=decoder_outputs.past_key_values,
- hidden_states=decoder_outputs.hidden_states,
- attentions=decoder_outputs.attentions,
- )
- class OPTForCausalLM(OPTPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config):
- super().__init__(config)
- self.model = OPTModel(config)
- # the lm_head weight is automatically tied to the embed tokens weight
- self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.model.decoder.embed_tokens
- def set_input_embeddings(self, value):
- self.model.decoder.embed_tokens = value
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- def set_decoder(self, decoder):
- self.model.decoder = decoder
- def get_decoder(self):
- return self.model.decoder
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- position_ids: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple, CausalLMOutputWithPast]:
- r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
- shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
- tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
- cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
- that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
- all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
- (see `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.n_positions - 1]`. for padding use -1.
- [What are position IDs?](../glossary#position-ids)
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, OPTForCausalLM
- >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
- >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
- >>> inputs = tokenizer(prompt, return_tensors="pt")
- >>> # Generate
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
- outputs = self.model.decoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- logits = self.lm_head(outputs[0]).contiguous()
- loss = None
- if labels is not None:
- # move labels to correct device to enable model parallelism
- labels = labels.to(logits.device)
- # Shift so that tokens < n predict n
- shift_logits = logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[1:]
- return (loss,) + output if loss is not None else output
- return CausalLMOutputWithPast(
- loss=loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @staticmethod
- def _reorder_cache(past_key_values, beam_idx):
- reordered_past = ()
- for layer_past in past_key_values:
- reordered_past += (
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
- )
- return reordered_past
- @add_start_docstrings(
- """
- The OPT Model transformer with a sequence classification head on top (linear layer).
- [`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models
- (e.g. GPT-2) do.
- Since it does classification on the last token, it requires to know the position of the last token. If a
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
- each row of the batch).
- """,
- OPT_START_DOCSTRING,
- )
- class OPTForSequenceClassification(OPTPreTrainedModel):
- def __init__(self, config: OPTConfig):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.model = OPTModel(config)
- self.score = nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
- output_type=SequenceClassifierOutputWithPast,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
- expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- position_ids: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.model(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- logits = self.score(hidden_states)
- if input_ids is not None:
- batch_size, sequence_length = input_ids.shape[:2]
- else:
- batch_size, sequence_length = inputs_embeds.shape[:2]
- if self.config.pad_token_id is None:
- sequence_lengths = -1
- else:
- if input_ids is not None:
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
- sequence_lengths = sequence_lengths.to(logits.device)
- else:
- sequence_lengths = -1
- logger.warning_once(
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
- "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
- )
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(pooled_logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(pooled_logits, labels)
- if not return_dict:
- output = (pooled_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutputWithPast(
- loss=loss,
- logits=pooled_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
- def get_input_embeddings(self):
- return self.model.decoder.embed_tokens
- def set_input_embeddings(self, value):
- self.model.decoder.embed_tokens = value
- @add_start_docstrings(
- """
- The OPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD
- (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- OPT_START_DOCSTRING,
- )
- class OPTForQuestionAnswering(OPTPreTrainedModel):
- def __init__(self, config: OPTConfig):
- super().__init__(config)
- self.model = OPTModel(config)
- self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- position_ids: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, OPTForQuestionAnswering
- >>> import torch
- >>> torch.manual_seed(4) # doctest: +IGNORE_RESULT
- >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
- >>> # note: we are loading a OPTForQuestionAnswering from the hub here,
- >>> # so the head will be randomly initialized, hence the predictions will be random
- >>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")
- >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
- >>> inputs = tokenizer(question, text, return_tensors="pt")
- >>> with torch.no_grad():
- ... outputs = model(**inputs)
- >>> answer_start_index = outputs.start_logits.argmax()
- >>> answer_end_index = outputs.end_logits.argmax()
- >>> answer_offset = len(tokenizer(question)[0])
- >>> predict_answer_tokens = inputs.input_ids[
- ... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
- ... ]
- >>> predicted = tokenizer.decode(predict_answer_tokens)
- >>> predicted
- ' a nice puppet'
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.model(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- logits = self.qa_outputs(hidden_states)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index).to(logits.device)
- end_positions = end_positions.clamp(0, ignored_index).to(logits.device)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + transformer_outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
- def get_input_embeddings(self):
- return self.model.decoder.embed_tokens
- def set_input_embeddings(self, value):
- self.model.decoder.embed_tokens = value
|