| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for Perceiver."""
- from typing import Dict, List, Optional, Union
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import center_crop, resize, to_channel_dimension_format
- from ...image_utils import (
- IMAGENET_DEFAULT_MEAN,
- IMAGENET_DEFAULT_STD,
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- get_image_size,
- infer_channel_dimension_format,
- is_scaled_image,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
- if is_vision_available():
- import PIL
- logger = logging.get_logger(__name__)
- class PerceiverImageProcessor(BaseImageProcessor):
- r"""
- Constructs a Perceiver image processor.
- Args:
- do_center_crop (`bool`, `optional`, defaults to `True`):
- Whether or not to center crop the image. If the input size if smaller than `crop_size` along any edge, the
- image will be padded with zeros and then center cropped. Can be overridden by the `do_center_crop`
- parameter in the `preprocess` method.
- crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
- Desired output size when applying center-cropping. Can be overridden by the `crop_size` parameter in the
- `preprocess` method.
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image to `(size["height"], size["width"])`. Can be overridden by the `do_resize`
- parameter in the `preprocess` method.
- size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
- Size of the image after resizing. Can be overridden by the `size` parameter in the `preprocess` method.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
- in the `preprocess` method.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
- parameter in the `preprocess` method.
- rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
- in the `preprocess` method.
- do_normalize:
- Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
- method.
- image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
- Mean to use if normalizing the image. This is a float or list of floats the length of the number of
- channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
- image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
- Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
- number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_center_crop: bool = True,
- crop_size: Dict[str, int] = None,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- do_rescale: bool = True,
- rescale_factor: Union[int, float] = 1 / 255,
- do_normalize: bool = True,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256}
- crop_size = get_size_dict(crop_size, param_name="crop_size")
- size = size if size is not None else {"height": 224, "width": 224}
- size = get_size_dict(size)
- self.do_center_crop = do_center_crop
- self.crop_size = crop_size
- self.do_resize = do_resize
- self.size = size
- self.resample = resample
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- self.do_normalize = do_normalize
- self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
- self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
- def center_crop(
- self,
- image: np.ndarray,
- crop_size: Dict[str, int],
- size: Optional[int] = None,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Center crop an image to `(size["height"] / crop_size["height"] * min_dim, size["width"] / crop_size["width"] *
- min_dim)`. Where `min_dim = min(size["height"], size["width"])`.
- If the input size is smaller than `crop_size` along any edge, the image will be padded with zeros and then
- center cropped.
- Args:
- image (`np.ndarray`):
- Image to center crop.
- crop_size (`Dict[str, int]`):
- Desired output size after applying the center crop.
- size (`Dict[str, int]`, *optional*):
- Size of the image after resizing. If not provided, the self.size attribute will be used.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- size = self.size if size is None else size
- size = get_size_dict(size)
- crop_size = get_size_dict(crop_size, param_name="crop_size")
- height, width = get_image_size(image, channel_dim=input_data_format)
- min_dim = min(height, width)
- cropped_height = (size["height"] / crop_size["height"]) * min_dim
- cropped_width = (size["width"] / crop_size["width"]) * min_dim
- return center_crop(
- image,
- size=(cropped_height, cropped_width),
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image to `(size["height"], size["width"])`.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
- data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the output image. If unset, the channel dimension format of the input
- image is used. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- Returns:
- `np.ndarray`: The resized image.
- """
- size = get_size_dict(size)
- if "height" not in size or "width" not in size:
- raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
- output_size = (size["height"], size["width"])
- return resize(
- image,
- size=output_size,
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- do_center_crop: Optional[bool] = None,
- crop_size: Optional[Dict[str, int]] = None,
- do_resize: Optional[bool] = None,
- size: Optional[Dict[str, int]] = None,
- resample: PILImageResampling = None,
- do_rescale: Optional[bool] = None,
- rescale_factor: Optional[float] = None,
- do_normalize: Optional[bool] = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: ChannelDimension = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
- Whether to center crop the image to `crop_size`.
- crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
- Desired output size after applying the center crop.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the image after resizing.
- resample (`int`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
- has an effect if `do_resize` is set to `True`.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image.
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image.
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
- Image mean.
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
- Image standard deviation.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
- crop_size = crop_size if crop_size is not None else self.crop_size
- crop_size = get_size_dict(crop_size, param_name="crop_size")
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- size = get_size_dict(size)
- resample = resample if resample is not None else self.resample
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- image_mean = image_mean if image_mean is not None else self.image_mean
- image_std = image_std if image_std is not None else self.image_std
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- validate_preprocess_arguments(
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- # All transformations expect numpy arrays.
- images = [to_numpy_array(image) for image in images]
- if is_scaled_image(images[0]) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- if do_center_crop:
- images = [
- self.center_crop(image, crop_size, size=size, input_data_format=input_data_format) for image in images
- ]
- if do_resize:
- images = [
- self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
- for image in images
- ]
- if do_rescale:
- images = [
- self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- for image in images
- ]
- if do_normalize:
- images = [
- self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
- for image in images
- ]
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
- ]
- data = {"pixel_values": images}
- return BatchFeature(data=data, tensor_type=return_tensors)
|