| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- # coding=utf-8
- # Copyright 2021 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization class for Perceiver."""
- from typing import Dict, List, Optional, Tuple
- from ...tokenization_utils import AddedToken, PreTrainedTokenizer
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class PerceiverTokenizer(PreTrainedTokenizer):
- """
- Construct a Perceiver tokenizer. The Perceiver simply uses raw bytes utf-8 encoding.
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods.
- Args:
- pad_token (`str`, *optional*, defaults to `"[PAD]"`):
- The token used for padding, for example when batching sequences of different lengths.
- bos_token (`str`, *optional*, defaults to `"[BOS]"`):
- The BOS token (reserved in the vocab, but not actually used).
- eos_token (`str`, *optional*, defaults to `"[EOS]"`):
- The end of sequence token (reserved in the vocab, but not actually used).
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the end of sequence.
- The token used is the `sep_token`.
- </Tip>
- mask_token (`str`, *optional*, defaults to `"[MASK]"`):
- The MASK token, useful for masked language modeling.
- cls_token (`str`, *optional*, defaults to `"[CLS]"`):
- The CLS token (reserved in the vocab, but not actually used).
- sep_token (`str`, *optional*, defaults to `"[SEP]"`):
- The separator token, which is used when building a sequence from two sequences.
- """
- model_input_names = ["input_ids", "attention_mask"]
- def __init__(
- self,
- pad_token="[PAD]",
- bos_token="[BOS]",
- eos_token="[EOS]",
- mask_token="[MASK]",
- cls_token="[CLS]",
- sep_token="[SEP]",
- model_max_length=2048,
- **kwargs,
- ) -> None:
- pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
- bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
- eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
- mask_token = AddedToken(mask_token, lstrip=False, rstrip=False) if isinstance(mask_token, str) else mask_token
- cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
- sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
- self._utf_vocab_size = 2**8 # utf is 8 bits
- # Since these tokens are not part of the vocabulary, we manually add them
- self._added_tokens_decoder: Dict[str, int] = {
- 0: pad_token,
- 1: bos_token,
- 2: eos_token,
- 3: mask_token,
- 4: cls_token,
- 5: sep_token,
- }
- self._num_special_tokens = len(self._added_tokens_decoder)
- super().__init__(
- pad_token=pad_token,
- bos_token=bos_token,
- eos_token=eos_token,
- mask_token=mask_token,
- cls_token=cls_token,
- sep_token=sep_token,
- model_max_length=model_max_length,
- **kwargs,
- )
- def get_vocab(self) -> Dict[str, int]:
- vocab = {}
- for i in range(self._utf_vocab_size):
- token = chr(i)
- vocab[token] = i + self._num_special_tokens
- vocab.update(self.added_tokens_encoder)
- return vocab
- @property
- def vocab_size(self):
- return self._utf_vocab_size
- def get_special_tokens_mask(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- # normal case: some special tokens
- if token_ids_1 is None:
- return [1] + [0] * len(token_ids_0) + [1]
- return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks. A sequence has the
- following format:
- - single sequence: `[CLS] X [SEP]`
- - pair of sequences: `[CLS] A [SEP] B [SEP]`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
- else:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 + [self.sep_token_id]
- def _tokenize(self, text: str) -> List[str]:
- """Take as input a string and return a list of strings (tokens) for words/sub-words"""
- tokens = [chr(i) for i in text.encode("utf-8")]
- return tokens
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- if len(token) != 1:
- token_id = self.unk_token_id
- else:
- token_id = ord(token) + self._num_special_tokens
- return token_id
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- token = chr(index - self._num_special_tokens)
- return token
- # TODO @ArthurZ refactor this as well....
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- bstring = b""
- for token in tokens:
- if token in self.added_tokens_encoder:
- tok_string = str(token).encode("utf-8")
- else:
- tok_string = bytes([ord(token)])
- bstring += tok_string
- string = bstring.decode("utf-8", errors="replace")
- return string
- # PerceiverTokenizer has no vocab file
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- return ()
|