| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- # coding=utf-8
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Phi-3 model configuration"""
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class Phi3Config(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the
- [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 32064):
- Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`Phi3Model`].
- hidden_size (`int`, *optional*, defaults to 3072):
- Dimension of the hidden representations.
- intermediate_size (`int`, *optional*, defaults to 8192):
- Dimension of the MLP representations.
- num_hidden_layers (`int`, *optional*, defaults to 32):
- Number of hidden layers in the Transformer decoder.
- num_attention_heads (`int`, *optional*, defaults to 32):
- Number of attention heads for each attention layer in the Transformer decoder.
- num_key_value_heads (`int`, *optional*):
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
- by meanpooling all the original heads within that group. For more details checkout [this
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
- `num_attention_heads`.
- resid_pdrop (`float`, *optional*, defaults to 0.0):
- Dropout probability for mlp outputs.
- embd_pdrop (`int`, *optional*, defaults to 0.0):
- The dropout ratio for the embeddings.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio after computing the attention scores.
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
- The non-linear activation function (function or string) in the decoder.
- max_position_embeddings (`int`, *optional*, defaults to 4096):
- The maximum sequence length that this model might ever be used with.
- original_max_position_embeddings (`int`, *optional*, defaults to 4096):
- The maximum sequence length that this model was trained with. This is used to determine the size of the
- original RoPE embeddings when using long scaling.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- rms_norm_eps (`float`, *optional*, defaults to 1e-05):
- The epsilon value used for the RMSNorm.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
- Whether to tie weight embeddings
- rope_theta (`float`, *optional*, defaults to 10000.0):
- The base period of the RoPE embeddings.
- rope_scaling (`dict`, *optional*):
- The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
- contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
- the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
- divided by the number of attention heads divided by 2.
- bos_token_id (`int`, *optional*, defaults to 1):
- The id of the "beginning-of-sequence" token.
- eos_token_id (`int`, *optional*, defaults to 32000):
- The id of the "end-of-sequence" token.
- pad_token_id (`int`, *optional*, defaults to 32000):
- The id of the padding token.
- sliding_window (`int`, *optional*):
- Sliding window attention window size. If `None`, no sliding window is applied.
- Example:
- ```python
- >>> from transformers import Phi3Model, Phi3Config
- >>> # Initializing a Phi-3 style configuration
- >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
- >>> # Initializing a model from the configuration
- >>> model = Phi3Model(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "phi3"
- keys_to_ignore_at_inference = ["past_key_values"]
- def __init__(
- self,
- vocab_size=32064,
- hidden_size=3072,
- intermediate_size=8192,
- num_hidden_layers=32,
- num_attention_heads=32,
- num_key_value_heads=None,
- resid_pdrop=0.0,
- embd_pdrop=0.0,
- attention_dropout=0.0,
- hidden_act="silu",
- max_position_embeddings=4096,
- original_max_position_embeddings=4096,
- initializer_range=0.02,
- rms_norm_eps=1e-5,
- use_cache=True,
- tie_word_embeddings=False,
- rope_theta=10000.0,
- rope_scaling=None,
- bos_token_id=1,
- eos_token_id=32000,
- pad_token_id=32000,
- sliding_window=None,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- if num_key_value_heads is None:
- num_key_value_heads = num_attention_heads
- self.num_key_value_heads = num_key_value_heads
- self.resid_pdrop = resid_pdrop
- self.embd_pdrop = embd_pdrop
- self.attention_dropout = attention_dropout
- self.hidden_act = hidden_act
- self.max_position_embeddings = max_position_embeddings
- self.original_max_position_embeddings = original_max_position_embeddings
- self.initializer_range = initializer_range
- self.rms_norm_eps = rms_norm_eps
- self.use_cache = use_cache
- self.rope_theta = rope_theta
- self.rope_scaling = rope_scaling
- self._rope_scaling_adjustment()
- self._rope_scaling_validation()
- self.sliding_window = sliding_window
- super().__init__(
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- pad_token_id=pad_token_id,
- tie_word_embeddings=tie_word_embeddings,
- **kwargs,
- )
- def _rope_scaling_adjustment(self):
- """
- Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
- """
- if self.rope_scaling is None:
- return
- rope_scaling_type = self.rope_scaling.get("type", None)
- # For backward compatibility if previous version used "su" or "yarn"
- if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
- self.rope_scaling["type"] = "longrope"
- def _rope_scaling_validation(self):
- """
- Validate the `rope_scaling` configuration.
- """
- if self.rope_scaling is None:
- return
- if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
- raise ValueError(
- "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
- f"got {self.rope_scaling}"
- )
- rope_scaling_type = self.rope_scaling.get("type", None)
- rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
- rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
- if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
- raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
- if not (
- isinstance(rope_scaling_short_factor, list)
- and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
- ):
- raise ValueError(
- f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
- )
- if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
- raise ValueError(
- f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
- )
- if not (
- isinstance(rope_scaling_long_factor, list)
- and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
- ):
- raise ValueError(
- f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
- )
- if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
- raise ValueError(
- f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
- )
|